Persistent Homology Guided Force-Directed Graph Layouts

Ashley Suh, Mustafa Hajij, Bei Wang, Carlos Scheidegger, and Paul Rosen

Abstract—Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets.

Index Terms—Graph drawing, force-directed layout, Topological Data Analysis, persistent homology.

1 INTRODUCTION

Graphs are ubiquitous for representing complex relationships between individuals or objects and are often used to model social interactions, energy grids, computer networks, brain connectivity, etc. The abstractness of graphs provides significant flexibility in visualization. However, dense, low-diameter subgraphs lead to confusing visualizations that appear as “hairballs”. A good graph visualization should present structure quickly and clearly, and support further investigation of the data.

A key element of node-link diagrams is the layout algorithm that places nodes on the display (semi-)automatically. The problem of automatic graph layout has a rich literature, in which many approaches focus on finding an embedding of the graph by optimizing a readability metric [77], such as symmetry of the graph, lengths of the edges, or the number of edge crossings. A significant advancement was the realization that the use of derived information, such as node rank, graph distance, or approximate clustering, could improve graph layouts [23, 34, 68]. However, many of these techniques either lack the ability to interactively manipulate the graph layout, or lack the temporal coherency of the layout necessary to make such interactions effective.

When considering graph layouts that support interactivity, perhaps the most popular (though not necessarily the best) method is a force-directed or spring-mass layout [36], which converts the graph into a physical system of attractive springs and repulsive forces that iteratively minimize an energy function. These systems rely upon local relationships to reveal the overall shape in the graph. The result is a method that shows topological structures in certain graphs, particularly sparse ones. However, this approach often causes unrelated or distant topological structures to overlap or cross paths, making them difficult to differentiate. Some capacity to address this problem is provided through user interaction. Unfortunately, the interaction is most often
through clicking and dragging individual nodes, which is ineffective for larger graphs and constrained by the forces applied to the graph layout.

This paper addresses the interactive manipulation of force-directed graph layouts by leveraging persistent homology (PH) [27,35] as derived information for the visualization of undirected graphs. PH has recently been shown to be a robust descriptor of graphs [41,78], and it has a few key qualities that make it ideal for this application. First, the PH calculation extracts PH features, in the form of 0-dimensional homological groups, from a graph without the need to select parameters. Second, the PH features can be quantified and ranked according to their significance, known as persistence. Third, they are invariant under small deformations, making them insensitive to noise and other small variations in data (e.g., removing a low-weight edge does not significantly change the graph) [41]. Finally, the set of all PH features produces a compressed description of the graph that can be represented using a persistence barcode [35], which our approach uses as a graphical user interface to manipulate the graph via PH features, instead of direct node manipulation.

In brief, our approach works as follows. We embed an undirected graph in a metric space by inducing a distance between all nodes. We extract the PH features (i.e., the 0-dimensional homological features) of the metric space structure [38] and sort them using their persistence (i.e., persistence). Starting with a Fruchterman-Reingold force-directed layout [21], we employ the PH features in two user-selectable ways. First, a selected PH feature can create a strong attractive force between the nodes that created the feature, causing them to contract (see Fig. 1(b)). Second, a selected PH feature can be used to partition the graph into two subsets, which are repulsed from one another (see Fig. 1(c)). The user employs as many contractive or repulsive forces as desired, in order to emphasize graph elements of interest (see Fig. 1(d)).

Contribution. We demonstrate the usefulness of using 0-dimensional PH features for controlling force-directed layouts. In summary: 1) we discuss extracting PH features from both weighted and unweighted graphs; 2) we introduce new forces into the layout that are derived from PH features; 3) we provide an interactive interface, based upon the persistence barcode, that allows users to interactively manipulate the layout using the PH features; and 4) we evaluate the approach by comparing it to popular force-directed layouts and clustering algorithms.

2 PRIOR WORK

Graph Visualization. Graph visualization is a broad area, as demonstrated by von Landesberger et al.’s survey [88]. Our treatment focuses on approaches for drawing node-link diagrams [36], which are used to display graphs in popular visualization systems, including Gephi [9], NodeXL [42], and Graphviz [29].

The first automated technique for laying out node-link diagrams was Tutte’s barycentric coordinate embedding [86], followed by linear programming techniques [34], force-directed/mass-spring embeddings [31,47], embeddings of the graph metric [33], and techniques exploiting linear-algebraic properties of the connectivity structures [11,53,55,56]. Hybrid approaches, such as TopoLayout [4], analyzed graph topology to identify the best type of graph embedding. Recent work using stress majorization has introduced the ability to add constraints that enable those layouts to highlight certain properties, such as stars, clusters, or circles [89]. The more challenging problem of visualizing multivariate networks has been addressed through visual analytics approaches [37].

Edge clutter presents a challenging problem for node-link diagrams. For denser graphs, edge bundling can reduce clutter by routing graph edges to the same portion of the screen [45]. In terms of quality, divided edge bundling [83] produces high-quality results, whereas hierarchical edge bundling [32] scales to millions of edges. There are also localized versions of edge bundling [31] and filtering [48,84] that adapt the display of edges based upon a user-selected region of interest.

Other visual metaphors have been proposed to reduce overall clutter, ranging from relatively conservative proposals, such as replacing nodes with motifs [24] based on graph topology or modules [25], to more aggressive forms, such as variants of matrix diagrams [21] and abstract displays of graph statistics [50].

When displaying a large dataset, it is natural to question the hard visual limits for graphs. Popular approaches such as pixel-based visualizations [51,52] encode large amounts of data within small rectangles or display pixels. Space-filling curves have also been used to build pixel-based graph visualizations [64]. Furthermore, using visual boosting [75] tailored to network data may further reveal hidden information.

Research into interactive manipulation of force-directed node layouts includes interaction techniques [41,88] such as panning and zooming, which are used to focus on regions of interest in a graph. In addition to interacting directly with nodes in force-directed layouts [31,57], approaches have included hierarchical layout constructions [43] and exploration [35], fisheye lenses [81,90], interactive refinement of automatic layouts [30], or constraint-based optimization [80].

3 PERSISTENT HOMOLOGY OF A GRAPH

We first provide a theoretic framing for our approach that is grounded in PH. In Sect. 4.1 we will discuss how the restricted form of PH used in this paper is a special case of single-linkage hierarchical clustering.

To extract PH features from a graph, we apply PH to a metric space representation of the graph [41]. See [27] for an introductory survey and [35] for a formal treatment of PH.

In algebraic topology, 0-dimensional homology groups of a graph describe the connected components of a metric space at a single spatial

(a) Conversion from Graph to Metric Space Embedding

(b) Conceptual Construction of PH Features Using Growing Balls

(c) Computational Construction of PH Features Using 1-Simplicies

Fig. 2. Example of extracting 0-dimensional PH of a graph. (a) Given an undirected graph G with edge weights w, we obtain a metric space representation by converting weights to distances by using $d = 1/w$ and completing the metric space using shortest-path distance. (b) Conceptually, components, or PH features, are formed around each point in the metric space. Balls grow around the points in the metric space to identify the diameter r at which components merge into larger components. (c) A filtration is constructed from G by adding edges when two balls intersect. When two components merge into one, the bar associated with one of the component in the persistence barcode (bottom) terminates.
resolution. In this paper, we use a multiscale notion of homology, persistent homology (PH), to describe the evolution of features of the space at different spatial resolutions.

Given a weighted graph \(G = (V, E, w) \) with positive edge weights defined by \(w : E \rightarrow \mathbb{R} \), our first step is to associate the graph \(G \) with a metric space representation. Considering the inverse of the positive edge weight as the length of an edge, a classical shortest path metric \(d \) is defined on \(G \), where the distance between each pair of nodes \(x, y \in G \) is the shortest path between them. This metric can be computed using Dijkstra’s algorithm [19].

Every node in \(G \) corresponds to a point in the metric space. To compute the 0-dimensional PH of \(G \), we apply a simple geometric construction on its metric space representation. Consider the set of balls centered at every point in the metric space with a diameter \(t \). We keep track of how the components of the union of balls evolve as \(t \) increases from 0 to \(\infty \). As \(t \) increases, the unions of balls form components in a hierarchical fashion.

Considering Fig. 2(b), starting from each point as a component when \(t = 0 \), as \(t \) increases, the number of components decreases by one when two components merge—formally, this is referred to as a topological event. At \(t = 1/4 \), the balls representing \(v_2 \) and \(v_3 \) touch, causing the merging of the components \(\{v_2, v_3\} \). At \(t = 1/3 \), the balls representing \(v_1 \) and \(v_2 \) touch, causing the merging of sets \(\{v_1\} \) and \(\{v_2, v_3\} \). At \(1/2 \), \(v_1 \) and \(v_3 \) touch. However, they are already part of the same component \(\{v_1, v_2, v_3\} \), meaning no merging occurs. Finally, at \(t = 1 \), \(v_3 \) and \(v_4 \) touch, merging the components \(\{v_1, v_2, v_3\} \) and \(\{v_4\} \).

A PH feature corresponds to the birth (appearance) and death (merging) of a component (union of balls) in the metric space. The birth of a component is the diameter when the component appears. In our case, all points appear simultaneously with diameter 0. The death is the diameter at which a component disappears; that is, when two components merge, one will disappear by joining the other (the choice of which disappears is discussed in the next section). The lifetime of a component (i.e., its death time minus its birth time) is its persistence.

The PH features associated with \(G \) are placed into a persistence barcode [35], which consists of a collection of bars, each corresponding to a single PH feature, whose starting and ending points correspond to the birth time and the death time of its associated component, with a width proportional to its persistence. See Fig. 2(c) for an illustration.

4. COMPUTATION OF PERSISTENT HOMOLOGY

The restricted form of PH used in this paper is functionally equivalent to single-linkage clustering. Therefore, the PH of the graph can be calculated by finding the minimum spanning tree (MST) of the graph using Kruskal’s algorithm [57].

4.1 FAST COMPUTATION OF THE 0-DIMENSIONAL BARCODE

In using Kruskal’s algorithm to compute the 0-dimensional barcode of the graph \(G \), we suppose for simplicity that \(G \) is connected. However, if it is not, each connected component of the graph is processed independently. In a nutshell, our algorithm consists of computing the minimum spanning tree (MST) of the graph using Kruskal’s algorithm [57]. This visualization is different from the conventional PH approach; however, it is justified as edges with higher weights \(w \) are considered more important in our setting.

4.2 NODE RELATIONSHIPS WITH THE SPANNING TREE

We relate information encoded by the MST to the graph \(G \), which will later define modifications to the graph layout. Denote the MST as \(T(V, E) \), where \(E \) denote the edges in the tree. Deleting an edge \(e = (u, v) \) from \(E \) splits the tree \(T \) into two sets, \(V_u \) and \(V_v \). Each PH feature (i.e., a bar in the barcode) is associated with the following information, as illustrated in Fig. 3.

- For our purpose, we visualize each bar in the persistence barcode as an interval \((0, w)\) instead of \((0, 1/w)\). Such a visualization emphasizes high weight edges as long bars. Under an abuse of notation, the persistence measure of such a bar is assigned \(w \).
- The cause of death, \(u \) and \(v \), are the nodes of the edge that cause the components to merge. These nodes will be used to modify the graph layout to reflect PH feature selection.
- The subsets of nodes, \(V_u \) and \(V_v \), represent the sets of connected nodes after the removal of the edge from the MST. These sets will also be important when updating the graph layout.
- The subset ratio is a measure of the number of nodes, \(|V_u| : |V_v| \) in the two subsets of nodes. It is a measure of centrality within the MST. For example, in Fig. 4 an example MST is augmented with the subset ratios. Edges in the fan-like areas to the left and right have low ratios, 1:7. The 2 central edges have a more balanced ratio, 4:4 and 3:5, indicating that they are more central to the MST. The distribution of subset ratios is entirely data dependent.

The addition of an edge to the spanning tree coincides with the event of two components merging. Therefore, there is a one-to-one correspondence between edges of the MST \(T \) and the 0-dimensional barcode of \(G \) with finite persistence.

![Fig. 3. Example of information extracted from a spanning tree (left) for edge \(e_1 \) from Fig. 2(b) (the purple bar). The right shows the clusters created when a selected edge is removed from the spanning tree.](image-url)
However, we observed in our examples that low ratios are far more common than balanced ratios.

Fig. 4. Example MST with associated subset ratios. Nodes toward the periphery have low ratios, whereas more central nodes have balanced ratios.

4.3 Application to Unweighted Graphs

The calculation described above requires a weight on the edges of the graph. For unweighted graphs, a similarity measure, such as the Jaccard index \[J_{ij} = \frac{|N_i \cap N_j|}{|N_i \cup N_j|} \], can take the place of edge weight.

Our procedure first gathers for each node a neighborhood or ego graph within a user-selectable number of hops. For example, a 1-hop ego graph will contain adjacent neighbors, whereas a 2-hop ego graph will contain both 1-hop neighbors and nodes adjacent to the 1-hop neighbors. The ideal number of hops is data dependent. We used 1-hop for denser graphs and 2- or 3-hops for sparser graphs. Then, given an edge \(e = (v_i, v_j) \), with neighborhood graphs \(N_i \) and \(N_j \), the Jaccard index between those nodes is \(J(v_i, v_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|} \). The edge weight becomes \(w(e) = J(v_i, v_j) \). In this way, the Jaccard index provides the similarity between the neighbors of 2 connected nodes. Finally, we proceed with the approach described in Sect. 3.

Other measures, such as edge centrality \[17 \], can be used in place of the Jaccard index to highlight different aspects of the graph. The only requirement is that the measure must provide a weight on the edges.

5 VISUAL DESIGN AND INTERACTION DESIGN

Our design goal is to use the PH of a graph as a control to manipulate its force-directed layout. We use a simple interactive interface to provide contextual information and enable fast manipulation of the layout.

5.1 Graph Drawing

Our design uses a force-directed layout, with optional edge bundling.

Force-Directed Layout. A graph is initially drawn with a Fruchterman-Reingold (F-R) force-directed layout \[31 \]. The layout starts with three types of forces. The first force enables all nodes to repulse one another \[(Fig. 5(c)) \]. The second force is a spring attraction for nodes connected by an edge \[(Fig. 5(d)) \]. Finally, a weak attracting force draws all nodes toward the middle of the display, essentially centering the layout \[(Fig. 5(e)) \]. The parameters for these forces, such as mass, force strength, and spring resting length, require manual tuning.

Fig. 5. The force-directed layout (a) for the graph in \[Fig. 2 \] is constructed using (c) repulsive forces, (d) spring attractive forces, and (e) a centering force. The interactive barcode (b) is used to manipulate the display.

5.2 Persistence Barcode

As mentioned in Sect. 4.2, we visualize the persistence barcode in an unconventional way. A PH feature that is born at 0 and dies at 1/\(w \) is visualized by a bar \((0, w)\) whose length indicates its persistence measure \(w \). That is, the larger the bar, the more “important” the PH feature it represents. We augment the barcode with additional visual encodings \((Fig. 5(b))\) to further guide interaction.

Subset Ratio. Each bar is augmented with a vertical line, splitting it into two based upon the Subset Ratio. For example, in \((Fig. 5(b))\), the bottom bar, representing \(e_3 \) from \((Fig. 2)\), has a 50/50 split, because two nodes exist on either side of the edge in the MST (see \((Fig. 3)\)).

Color. For graphs with categorical data, each side of the split is colored based on the category of the *Cause of Death* nodes for the PH feature.

Bar Sorting. Bars are sorted based upon two criteria. The first is persistence from low to high, which helps to differentiate high persistence features from those with low persistence. If the persistence values of two bars are equal, then they are sorted by their Subset Ratios, with bars having 50/50 ratios appearing lower in the barcode, since those are more central to the MST.

5.3 Interaction Using the Persistence Barcode

PH Feature Contraction. In certain scenarios, it is desirable to shrink space allocated to nodes in the layout, making more room for other parts of the graph to be displayed. We provide a persistence simplification tool that enables contraction of all PH features whose persistence is below a user-selected threshold. This interaction is done by dragging a filter bar at the top of the barcode; see the filter bar in red in \((Fig. 6(c))\). As the threshold is dragged left to right, PH features with persistence...
5.4 Typical Usage Session

After a graph is loaded and any adjustments are made to standard force strengths, the user begins to explore the PH features of the graph. To start, the contraction forces are explored by slowly adjusting the threshold (top) and after (bottom) repulsion

PH Feature Repulsion. In other situations, stretching out the graph can clear space for nodes and edges that might otherwise be overlapping and difficult to track. When a bar is individually selected, the bar color is darkened, and a strong repulsive force is added between the subsets of nodes associated with that PH feature. The scale of the force is user selectable. The repulsion of the nodes from these two groups allows the layout to cluster. For example, Fig. 6(b) illustrates the force when the bottom bar in Fig. 6(a) is selected for repulsion, causing the subsets to push apart. In other words, in Fig. 6(b) all the points in the blue region have an additional repulsion from all of the points in the purple region and vice versa. Fig. 6(f) shows the result of adding this force to the graph.

Selecting Multiple Bars. Multiple bars may be selected for contraction and repulsion, since the forces do not directly depend on each other. Whenever a new bar is selected, the force is simply added to the layout.

Preview Hovering. To help users preview the impact of a bar’s selection when the mouse hovers over a bar in the barcode, set visualization can be employed, such as bubble sets [15] or kelp diagrams [20]. We employ bubble sets on the subsets of nodes to differentiate which nodes belong to which subset. Fig. 7 shows examples of bubble sets employed on a dataset. The bubble sets demonstrate two examples of before and after the PH feature is selected for repulsion, respectively.

Hyperbolic Zoom for a Large Barcode. The number of bars is equal to the number of nodes in the graph minus one. In order to scale the barcode appropriately for a large graph, a scrollbar with hyperbolic zoom is placed to the right of the bars. As the scrollbar moves, the focus of the hyperbolic zoom is modified to emphasize the associated bars. An example of this can be seen in our accompanying software.

6 RESULTS

To evaluate using PH to guide force-directed layouts, we examine 12 datasets using hand-tuned layouts (see Table 1). Our evaluation considers the following:

• We examine the scalability of our approach to quickly calculate PH and update the graph layout fast enough to support interactive visualization, using graphs up to 10,000 nodes or 100,000 edges.
• We measure the quality of the layouts produced by our approach.
• We compare the layouts produced by our approach to popular force-directed layout methods and clustering techniques.
• We present three brief case studies on real-world data.

6.1 Performance

The accompanying software is implemented using Processing [2]. All calculations are performed on the CPU. The force calculations are multithreaded. The live footage from the accompanying video was produced on a 2017 MacBook Pro with a 3.1 Ghz i5 processor to demonstrate the interactivity of the interface.

Once the data is loaded, the 0-dimensional PH features are extracted. The MST calculation is a variation of Kruskal’s algorithm performed on the metric space. It is implemented using disjoint sets taking $O(|E| \alpha(|V|))$, where α is the inverse Ackermann function [16], an extremely slow growing function. After the MST is found, determining the node subsets (see Sect. 4.2) takes $O(|V|)$.

For the F-R force-directed layout, we use the Barnes-Hut approximation [8] for repulsive forces and standard pairwise springs. The total cost is $O(|V| \log |V| + |E|)$ per iteration. In addition, contraction forces are single pairwise springs. The worst case total cost is $O(|V|^2)$, if all PH features are selected for contraction. The repulsion force can be costly. Each force that is applied requires an additional run of the Barnes-Hut algorithm. Since the number of repulsive forces is usually small, the expected run time is $O(|V| \log |V|)$ with the worst case $O(|V|^2 \log |V|)$, when all PH features are set to repulse.

To improve interactivity of the visualization on larger datasets, certain noncritical features are disabled. For example, edge bundling is automatically disabled when the number of edges is greater than 500. In addition, bubble sets are disabled when the number of nodes is greater than 100. Instead, the graph nodes are surrounded by a halo, which is colored according to the set they belong to.

Table 1. Quantitative Analysis of Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-R</td>
<td>sfdp</td>
<td>Our Approach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les Mis.</td>
<td>77</td>
<td>254</td>
<td>1(a) < 1 ms</td>
<td>n/s</td>
<td>52 ms</td>
<td>1(a) < 1 ms</td>
<td>n/s</td>
<td>52 ms</td>
<td>-23%</td>
<td>134%</td>
</tr>
<tr>
<td>Bcsstk11</td>
<td>110</td>
<td>364</td>
<td>2(a) 3 ms</td>
<td>n/s</td>
<td>65 ms</td>
<td>2(b) 4 ms</td>
<td>n/s</td>
<td>65 ms</td>
<td>-30%</td>
<td>101%</td>
</tr>
<tr>
<td>6-ary</td>
<td>9,331</td>
<td>9,330</td>
<td>3(a) 49 ms</td>
<td>n/s</td>
<td>514 ms</td>
<td>2(b) 4 ms</td>
<td>n/s</td>
<td>514 ms</td>
<td>-5%</td>
<td>100%</td>
</tr>
<tr>
<td>Barbell</td>
<td>150</td>
<td>2,503</td>
<td>2(a) 3 ms</td>
<td>n/s</td>
<td>95 ms</td>
<td>2(b) 4 ms</td>
<td>n/s</td>
<td>95 ms</td>
<td>-57%</td>
<td>83%</td>
</tr>
<tr>
<td>lobster</td>
<td>450</td>
<td>2,503</td>
<td>3(a) 4 ms</td>
<td>n/s</td>
<td>116 ms</td>
<td>2(b) 4 ms</td>
<td>n/s</td>
<td>116 ms</td>
<td>-57%</td>
<td>83%</td>
</tr>
<tr>
<td>Senate</td>
<td>101</td>
<td>5,048</td>
<td>2(a) 4 ms</td>
<td>n/s</td>
<td>110 ms</td>
<td>2(b) 4 ms</td>
<td>n/s</td>
<td>110 ms</td>
<td>-36%</td>
<td>94%</td>
</tr>
<tr>
<td>Madrid</td>
<td>70</td>
<td>243</td>
<td>2(a) 4 ms</td>
<td>n/s</td>
<td>88 ms</td>
<td>2(b) 4 ms</td>
<td>n/s</td>
<td>88 ms</td>
<td>-24%</td>
<td>212%</td>
</tr>
<tr>
<td>Airport</td>
<td>2,896</td>
<td>15,645</td>
<td>2(a) 15 ms</td>
<td>n/s</td>
<td>128 ms</td>
<td>2(b) 15 ms</td>
<td>n/s</td>
<td>128 ms</td>
<td>-12%</td>
<td>231%</td>
</tr>
<tr>
<td>Science</td>
<td>554</td>
<td>2,276</td>
<td>3(a) 7 ms</td>
<td>n/s</td>
<td>846 ms</td>
<td>2(b) 7 ms</td>
<td>n/s</td>
<td>846 ms</td>
<td>-34%</td>
<td>176%</td>
</tr>
<tr>
<td>Collab.</td>
<td>379</td>
<td>914</td>
<td>3(a) 7 ms</td>
<td>n/s</td>
<td>94 ms</td>
<td>2(b) 7 ms</td>
<td>n/s</td>
<td>94 ms</td>
<td>-8%</td>
<td>59%</td>
</tr>
<tr>
<td>Citeseer</td>
<td>762</td>
<td>16,651</td>
<td>3(a) 7 ms</td>
<td>n/s</td>
<td>100 ms</td>
<td>2(b) 7 ms</td>
<td>n/s</td>
<td>100 ms</td>
<td>-10%</td>
<td>89%</td>
</tr>
<tr>
<td>Smith</td>
<td>2,970</td>
<td>97,133</td>
<td>3(a) 8 ms</td>
<td>n/s</td>
<td>467 ms</td>
<td>2(b) 8 ms</td>
<td>n/s</td>
<td>467 ms</td>
<td>-23%</td>
<td>426%</td>
</tr>
</tbody>
</table>

n/s: Not shown
To show that the performance of our approach is comparable to other techniques, we report computation times in Table 1. For our approach, the category Computation is the time needed to calculate the PH and determine the node subsets. For Neato [72], it is the time to converge. For hierarchical clustering, it is the time to compute the entire hierarchy. These computations occur only once, when the data is loaded. The category Layout is the time in milliseconds (ms) needed for one iteration of the force-directed layout calculation. Our implementation runs one iteration per rendering frame. In addition, many of our examples include frame rate, reported as frames per second (FPS). This number is generally less relevant, as it includes the extra costs of rendering, edge bundling, etc., which are mostly fixed costs.

The results demonstrate that, for all datasets, our approach has the scalability necessary to be utilized in interactive visualization. The PH calculations take at most a few seconds, and the time required for most layouts is less than 10 ms; for the larger graphs tested, it is always less than 100 ms.

6.2 Layout Quality

To assess the responsiveness of our approach, we introduce a measure specifically designed to quantify how well the resulting layouts reflect user intentions in emphasizing or de-emphasizing selected PH features. The approach works by comparing the PH of the embedded graph nodes of the layout before and after user modification. The approach starts by calculating the PH of the nodes of the source F-R force-directed layout (without any contraction or repulsion) using Euclidean distance [4]. Then, the PH of the user-selected target layout is calculated similarly.

Given a source and target, we extract the set of bars from each that are selected by the user for contraction (C) and repulsion (R). The persistence of those bars in the source and target is P_S and P_R, respectively. The effect of contraction (E_C) and repulsion (E_R) are calculated as:

$$E_C = \frac{1}{|C|} \sum_{x \in C} \frac{P_T(x) - P_S(x)}{P_S(x)} , \quad E_R = \frac{1}{|R|} \sum_{x \in R} \frac{P_T(x) - P_S(x)}{P_S(x)}$$

The results appear in the final two columns of Table 1 comparing the source layout (F-R layout listed in the table) to the target layout (our approach). Intuitively, this measure quantifies how much on average the features of a layout have been contracted or repulsed in the target layout.

Note, this calculation does not consider the connectivity of the graph.

Fig. 8. Illustration of our approach on the synthetic graph examples: (a) a Fruchterman-Reingold (F-R) force-directed layout, hand-tuned; (b) a Neato layout [72] generated by Graphviz [29] using Jaccard index for edge weights; (c) our approach: only contraction is applied; (d) our approach: only repulsion is applied; and (e) our approach: both contraction and repulsion are applied.
We test our method on four synthetic unweighted graphs in Fig. 8 to layout methods, each graph has weights applied by using the method that the removal of leaves results in a caterpillar graph \[38\]. For all totaling 150 nodes and 2501 edges. two complete subgraphs of 50 nodes each with a bridge of 50 nodes, 6-ary nodes and 364 edges. NetworkX \[40\]. Bcsstk Matrix Collection \[18\}; 6-ary Bcsstk Graphviz \[29\], and our approach. compare the layouts of F-R force-directed layout, Neato \[72\] from 6.3.1 Comparison to Popular Force-Directed Layout Methods

6.3 Comparison to Other Techniques

6.3.1 Comparison to Popular Force-Directed Layout Methods

We test our method on four synthetic unweighted graphs in Fig. 8 to compare the layouts of F-R force-directed layout, Neato \[22\] from Graphviz \[29\], and our approach. Bcsstk is taken from the UCI Sparse Matrix Collection \[18\]; 6-ary, Barbell, and Lobster are generated using NetworkX \[40\]. Bcsstk is a symmetric stiffness graph containing 110 nodes and 364 edges. 6-ary is a balanced tree of depth five containing 9331 nodes and 9330 edges. Barbell is a simple graph connecting two complete subgraphs of 50 nodes each with a bridge of 50 nodes, totaling 150 nodes and 2301 edges. Lobster is a tree with the property that the removal of leaves results in a caterpillar graph \[18\]. For all layout methods, each graph has weights applied by using the method described in Sect. 4.3 with the following neighborhood size: Bcsstk: 1-hop; 6-ary: 2-hop; Barbell: 1-hop; and Lobster: 1-hop. Fig. 8 shows three examples of our approach using contraction only, repulsion only, and a combination of both.

6.3.2 Comparison to Hierarchical Clustering

Next, we compare our approach to modularity-based hierarchical clustering. For a survey of graph clustering, including modularity, see \[82\]. We use a greedy approach to form the clusters \[67, 69\] available in Graphviz \[29\], since the optimal version is NP-hard \[14\]. The algorithm begins by initializing each node in the graph into its own cluster. The 2 clusters whose merging will cause the largest increase in modularity begins by initializing each node in the graph into its own cluster. The 2 clusters whose merging will cause the largest increase in modularity are then combined. The weighted modularity is calculated as \[62\]:

\[Q_w = \frac{1}{2w_s} \sum_{ij} \left[w_{ij} - \frac{w_i w_j}{2w_s} \right] \delta_{i,j}, \]

where \(2w_s = \sum_j w_{ij}, w_i = \sum_j w_{ij}, \) and Kronecker delta \(\delta_{i,j} \) is 1 if both \(i \) and \(j \) are in the same community, 0 otherwise. This process is repeated until a single cluster remains.

To reflect the clustering in the graph layout, we increase the spring rest lengths between nodes of different clusters. Examples can be seen in Fig. 9 Table 1 shows the time to compute the clustering.
The Collaboration Science Network (Collaboration) produces results that we found difficult to interpret. To bring more tightly together, subcommittees are brought using our approach.

The graph has 2 subdisciplines in science, represented as nodes, and cross-disciplinary comparisons are difficult. Unfortunately, without the label data, other direct techniques. Each of the techniques presents similar looking results. The Collaboration Science Network (Collaboration) is formed at the split of North America and Asia, containing several Hawaiian airports. The results in columns 2 and 3 show similar clustering insights, but Hawaiian airports are not directly visible.

1211 International Airports (Airport) is a map of 554 subdisciplines in science, represented as nodes, and cross-disciplinary coauthorship as the 2,276 edges. Our method, when applied to this particular dataset, results in a graph that retains the overall shape of the F-R layout with the addition of clustering communities that share similarities. On the other hand, the clustered versions of the graph (columns 2 and 3) highlight the clustering structure but lose the context (ground truth labels).

The Collaboration Science Network (Collaboration) is a coauthorship network with 379 nodes–publishing scientists in network theory–and 914 edges–a connection of two authors appearing in the same paper. The emphasis of the graph is to identify communities of collaborators. With the majority of bars selected for contraction (column 4 and 5), subcommittees are brought more tightly together, better revealing the overall graph shape. Clustering on the other hand, the clustered versions of the graph (columns 2 and 3) produces results that we found difficult to interpret.

Smith College (Smith) is from the Facebook100 dataset and shows the social relations of students at Smith College. The graph has 2,970 nodes and 97,133 edges. The original graph contained attributes, including dormitory, gender, etc., but we were unable to locate this data. For this example, the key emphasis is on the scalability of our approach.

Caltech is a dataset of the social links at the California Institute of Technology, also from the Facebook100 dataset. The graph has 762 nodes and 16,651 edges. For this example, we compare against modularity hierarchical clustering and adaptive refinement techniques. Each of the techniques presents similar looking communities. Unfortunately, without the label data, other direct comparisons are difficult.

6.4 Case Studies

6.4.1 Lés Miserables

The Lés Miserables Co-occurrence network has 77 nodes and 254 edges, where a node represents a character, and an edge is weighted by the number of scenes two characters share during any chapter of Victor Hugo’s novel “Lés Miserables”. The node classification comes from the primary group affiliation of the characters in the novel; the groups are named based upon our knowledge of those characters.

In Fig. 1(a), we show the F-R force-directed layout for this dataset. When selecting a combination of high persistence bars and contracting the remaining ones (see Fig. 1(c)), we reveal some of the key characters featured in the book, seen in Fig. 1(d). On two opposing sides of the layout are nodes Marius and a cluster around Valjean, two main characters, along with Éponine—a woman in love with Marius; Javert—the primary antagonist to Valjean; Cosette—Valjean’s daughter and Marius’ lover; and Toussaint—a motherly-figure assisting in raising Cosette through her childhood.

6.4.2 Madrid Train Bombing

The Madrid Train Bombing dataset contains 70 nodes and 243 edges, where a node represents “individuals involved in the bombing of commuter trains in Madrid on March 11, 2004” [79]. Each group has been identified and colored based on whether the person was involved in previous terrorist acts and whether this person was a member of the Field Operations Group. A link is connected if two individuals were related prior to or during the bombing. Weight is calculated on an index between 1–4, where each of the following four parameters are summed per pair: trust–friendship (contact, kinship, links in the telephone center); ties to Al Qaeda and Osama Bin Laden; co-participation in training camps and/or wars; and co-participation in previous terrorist Attacks (September 11, Casablanca, etc.).
We begin by examining the layout in Fig. 11(a) which is drawn to replicate the original graph in Rodriguez’s paper [79]. This is the complete network, incorporating all players with their respective binding ties. Although Rodriguez created this graph layout to highlight the central core of the network, it is difficult to identify whom he calls the “three most central players” involved in the Madrid bombing.

When selecting a number of bars for contraction and repulsion, shown in Fig. 11(b) the graph closely corresponds with the analysis provided in the paper. Jamali Zougam, Mohamed Chaooui, and Said Berrak are the three most central players in the Field Operations Group network, with all three central to the graph. Below Zougam is Abdelahid Berrak, who was suspected to be responsible for recruiting new members to the Field Operations Group. Another central player highlighted in Rodriguez’s analysis is Abderrahim Zbakh, known as “The Chemist”. In the original layout, his node is not remarkable; yet, Rodriguez described Zbakh as “cementing the network” by uniting unacquainted members of various terrorist groups. Other significant players include Amer Aziz and Imad Eddin Barrakat: al Qaeda, operatives closely linked as facilitators in the September 11 attacks.

6.4.3 US Senate 2007 and 2008 Co- and Anti-voting

The US Senate 2007 and 2008 datasets are complete co- and anti-voting graphs, both with 101 nodes (100 senators plus the Vice President) and 5,048 edges. This dataset is created using voting records provided by GovTrack [1] with weights corresponding to how frequently two senators vote together (or against each other).

The 2007 co-voting graph in Fig. 12(a) shows the normal partisan divide—Democrats voting with Democrats and Republicans voting with Republicans. Three figures stand out among the “centerist” group: Snowe, Collins, and Specter. Snowe and Collins are well known for voting across partisan lines. Specter switched from the Republican to Democrat party in 2009. The 2007 anti-voting graph in Fig. 12(b) highlights whom each person was most likely to vote against. The graph shows 4 clusters that isolate individuals of the opposite party: DeMint, Dodd, Biden, and Obama.

In 2008, the presidential election was in full swing, and the co-voting graph in Fig. 12(c) shows that partisanship reigned. The Republicans in particular voted together. Bayh is the Democrat standout who appeared most aligned with Republicans. The 2008 anti-voting graph in Fig. 12(d) highlights the politics of the election. On one side, the Republicans were running against Obama. On the Democrat side, Democrats focused on running against McCain and the Vice President, Cheney. The vote against Cheney is likely an artifact of how Congress works—the Vice President votes needs to only when there is a tie. The vote against McCain fits, since he was the Republican nominee.

7 DISCUSSION

Transferability to Other Force-Directed Layout Algorithms. F-R force-directed layout was used as our reference layout. Since our modification uses only additional repulsive and spring forces, by and large, other force-directed layout variants, such as sfdp [47] or FMF [39], should be able to adapt our approach to their algorithms and see benefits similar to those we have demonstrated.

Relationship to Hierarchical Clustering. Calculating 0-dimensional PH features has a strong relationship to finding hierarchical clusters. However, the main differentiating factor is the treatment of features in PH. For example, PH sees low-weight edges as “noise”, and hence collapsing them makes sense. At the same time, it sees high-weight edges as signals, and hence separating such features is meaningful.

(Semi-)Automatically Selecting Features. Given the procedure defined in Sect. 5.4 it is possible to imagine that a (semi-)automatic heuristic-based approach could be used to initialize the contraction and repulsion. We did not pursue such an approach for two reasons. First, the amount of interaction saved by such an approach would not be that significant. In our experience, exploring the contraction and repulsion options takes only a few minutes. Second and more importantly, the interaction process provides intuition about the graphs. This intuition is critical in selecting a final graph layout.

Disconnected Graphs. In the case of a disconnected graph, PH calculations work without any modification by recognizing that disconnected components never merge. After that, our approach considers each connected component in the graph separately.

Limitations. Our approach is not without limitations. The first problem is that force-directed layouts are, by their nature, over-constrained. Adding additional forces can exacerbate this problem. We see this in a number of examples that have negative results for contraction effectiveness (see Sect. 6.2). Second, there is the possibility for selective-engineering of the layout. Users can choose to ignore or select any PH feature to repulse, which could lead to intentionally ignoring important PH features in the final layout. Next, the worst case number of interactions needed can be quite large. To test every possible contraction and repulsion requires $2|N|$ interactions, not to mention the cost of testing combinations. Fortunately, we find the actual interaction process to be fairly quick for high-quality results (see Sect. 5.4). Finally, our approach assumes that a unique MST exists for an input graph. If such an assumption does not hold (for example in Sect. 6.4.2), an arbitrary tree from the set of MSTs is selected. Selecting an optimal MST using various constraints deserves further investigation.

8 CONCLUSION

We have presented a new approach to graph drawing that uses PH to interactively modify a force-directed layout. The approach provides a flexible interface for selecting layouts that highlight features of the graph, as defined by PH. In the future, we would like to look at the potential of using higher-dimensional PH features to control graph drawing. For example, 1-dimensional PH features encode tunnels within metric spaces, which would be useful in constraining similar structures in the graph. However, with higher-dimensional PH features, finding the set of points that generate these features is a nontrivial problem.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable feedback. This work was supported in part by National Science Foundation grants IIS-1513616 and IIS-1109792.