
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 1

Ordering Traces Logically to Identify Lateness in
Message-Passing Programs

Katherine E. Isaacs, Todd Gamblin, Abhinav Bhatele, Martin Schulz, Bernd Hamann,
and Peer-Timo Bremer

Abstract—Event traces are valuable for understanding the behavior of parallel programs. Automatically analyzing a large parallel
trace, however, especially without a specific objective, is difficult. We aid this endeavor by extracting a trace’s logical structure, an
ordering of operations derived from their happened-before relationships while taking into account developer intent. Using this structure,
we can calculate an operation’s delay relative to its peers on other processes. The logical structure also serves as a platform for
comparing and clustering processes as well as highlighting communication patterns in a trace visualization. We present an algorithm
for determining this idealized logical structure from traces of message passing programs, and we develop metrics to quantify delays
and differences among processes. We implement our techniques in our tool Ravel, a novel parallel trace visualizer that displays both
logical and physical timelines. Rather than showing the duration of each operation, we display where delays begin and end, and how
they propagate. We apply our approach to traces from several message passing applications, demonstrating the accuracy of our
extracted structure and its utility in analyzing these codes.

Index Terms—trace analysis, performance

F

1 INTRODUCTION

Writing an efficient, scalable parallel program that performs
well on a range of architectures is challenging. Achieving
good performance usually involves several, often tedious, it-
erations of noticing performance problems, identifying their
causes, and reworking the implementation accordingly. One
common option to help with this process are tracing tools,
which capture communication events and visualize them in
timeline views (such as Vampir [1]). However, two factors
limit their effective use at scale. First, traces from large num-
bers of processes or from long-running jobs are prohibitively
large. Second, the complex communication patterns com-
mon in many large-scale codes are hard to identify and
comprehend when plotted with respect to wall-clock time.
We need new analysis and visualization tools to help users
understand complex parallel execution traces and to aid
in determining the information necessary to optimize the
analyzed code.

In this paper, we address the difficulties in trace anal-
ysis by focusing on the underlying logical communica-
tion structure of a message passing program based on
the happened-before relationships of traced events across
multiple processes. This structure differs from previous
analyses in logical time by considering the developers’
intended organization when handling concurrent events to
establish happened-before relationships at several granu-
larities. Using the information from this logical structure,

• K. E. Isaacs and B. Hamann are with the Department of Computer Science,
University of California, Davis, CA 95616.
E-mail: {keisaacs, bhamann}@ucdavis.edu

• T. Gamblin, A. Bhatele, M. Schulz and P.-T. Bremer are with the Center for
Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA 94551.
E-mail: {tgamblin, bhatele, schulzm, ptbremer}@llnl.gov

Manuscript received ; revised .

we define metrics in terms of relationships among logically
simultaneous operations across processes, abstracting only
the performance critical timing information. Specifically, we
define lateness, which measures how delayed an operation is
relative to its peers, and differential lateness which measures
how much delay was injected into the system at an opera-
tion, allowing analysts to quickly identify delayed processes
and the bottlenecks they cause.

One immediate advantage is that since the logical struc-
ture aligns communication operations across processes, it
leads to cleaner visualizations that more directly expose
communication patterns. The logical structure also provides
the necessary basis for comparing and clustering processes.
Ravel [2], our interactive trace visualization tool, displays
traces in both wall-clock and logical time and uses clustering
to improve the scalability of the visualization and help users
focus on the most important parts of the trace.

We present our algorithm for deriving logical structure
and its associated metrics using the LULESH shock hy-
drodynamics proxy application [3]; a proxy application for
the communication in pF3D [4], a laser-plasma interaction
code; the SMG2000 semicoarsening multigrid solver bench-
mark [5]; and the Multi-grid (MG) benchmark from the NAS
Parallel Benchmarks (NPB) suite [6], [7] to illustrate our
approach.

Further, we demonstrate the effectiveness of our logical
structure extraction technique and the utility of our tempo-
ral metrics through three case studies. We study multiple
implementations of collective operations in MPI [8], an in
situ merge tree appication [9] for topological data analysis,
and a sparse linear solver library [10] via the AMG2013
benchmark [11]. We conduct our studies on an IBM Blue
Gene/Q system and on a commodity cluster with Intel
Sandy Bridge processors and an Infiniband network.

The major contributions of this work are:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 2

Lateness
0μs 33μs

MPI Application

Fig. 1: Trace of a 16 process MPI_Alltoall using the dissemination implementation from libNBC [8]. From the raw
physical time data, shown on the left using Vampir [1], we deduce a logical structure, visualized on the right, and use this
structure to compute a novel lateness metric of each operation, shown on the right using color. In this example, we can
clearly see that the lateness from a receive on process 11 propagates to several other processes.

• A set of techniques to extract the logical communica-
tion structure of a message passing program from its
execution trace;

• Novel metrics, such as lateness, that help identify
performance bottlenecks or delays in the execution;

• Case studies demonstrating that the new approach
accurately detects and highlights performance char-
acteristics difficult to obtain from existing techniques.

2 RELATED WORK

Parallel execution traces are used for both performance anal-
ysis and debugging. Automated trace tools like Kojak [12]
or its successor Scalasca [13] can detect given patterns of
known performance problems, such as the late arrival of a
message, and compute a severity score, which is mapped to
source code. While this helps in identifying the locations at
which the bottleneck exists, it typically does not make the
context or root cause readily available. In particular, while
these tools can pinpoint very local performance problems,
they cannot identify transitive dependence chains or rela-
tions among processes easily. The addition of root cause
analysis [14] allows the tracking of delay through depen-
dencies, much like our differential lateness. However, the
analysis remains limited to local waiting state calculations
instead of taking into account the context of peer operations
as done when calculating lateness.

Morajko et al. [15] build per-process causality graphs
for discovering structure and detecting propagation and
root causes. They aggregate these graphs by identity and
compress performance data on the representative graph.
This can unduly emphasize boundary behavior of a small
number of processes while hiding more extreme behavior
of larger clusters.

Another way of analyzing trace data is to determine the
critical path through the program and analyze performance
in that context [16], [17]. However, it is often unclear how
the critical path interacts with the rest of the trace to cause
issues. Moreover, critical paths can be lengthy, often require
costly reverse playback, and can obscure subpaths of inter-
est.

Manual trace analysis is often facilitated through time-
line visualization: events are arranged in order of increasing
time on the horizontal axis and in rank order by process id
on the vertical axis. Fig. 1 (left) is a typical example taken

from Vampir [1]. Other trace visualizers like Jumpshot [18]
or Paraver [19] provide similar views. While such timelines
allow the user to make inferences about timing directly from
the spatial layout, excessive detail makes finding areas of
interest difficult. It also clutters the visualization and makes
interpretation arduous, as dependencies are hard to follow.
Logical time trace visualizations have been implemented,
mostly for debugging [20], [21], but these incorporate few
dependencies and thus place concurrent events as early as
possible, and do not incorporate physical time information
directly within the view. Our logical structure and metrics
provide another way to visualize traces, the details of which
can be found in [2]. In this paper, we employ Vampir as
one example of an established trace visualization tool using
a conventional timeline view and Ravel to illustrate our
logical structure and metrics.

Many tools [22], [23], [24] have focused on detecting
high-level, statistical program behavior using clustering
and wavelet techniques. While these numerical techniques
provide useful high-level structure, they do not help pro-
grammers understand local logical dependence chains in
communication threads. Such algorithms could easily be
combined with our approach to display these aggregate
metrics within our logical structure.

3 EXTRACTING LOGICAL STRUCTURE

In contrast to existing approaches, we transform an event
trace into a logical communication structure, and we per-
form analysis in this context. Throughout, we assume that
a parallel trace for a message passing program consists
of measured instantaneous events that are either function
entry or exit, or communication such as sends, receives,
or collectives. We call two matching enter and exit records
an operation and two matching send and receive records a
message. We further assume, at a minimum, that an execu-
tion trace is a series of records of the enter and exit time
of each operation that invokes communication, the send
and receive time of each point-to-point message, and the
processes associated with these operations and messages. In
this paper, we focus on MPI, but aside from a few rules for
specific MPI operations, our structure algorithm could be
applied to any other message-passing model.

The logical structure of a program is an ordering of
operations consistent with that program, ideally reflecting

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 3

Partition Ordering Message

Related Communication

(a) Matching sends and receives indi-
cate operations are related and should be
merged.

Partition Ordering Merged Partitions

(b) Ordering relations for merged par-
titions are derived from the pre-merge
neighbors.

Partition Ordering Merged Partition

(c) Strongly connected components are
merged into single partitions.

Fig. 2: Mandatory Partitions

the developers’ intended organization. Due to either pro-
gramming errors or ambiguities in assigning logical time
steps the structure may differ, but in general our goal
is to determine which sets of operations are intended to
happen simultaneously. This allows us to compare and
analyze demonstrated versus ideal behavior of operations.
While a traditional trace visualization relies on the layout
of operations to highlight deviations from the ideal, we can
compute deviations according to various metrics described
in Section 4.

Fig. 1 (right) shows an example logical trace, arranged
so that operations that could happen simultaneously are ver-
tically aligned, while the left side shows a traditional view.
In both visualizations, time proceeds from left to right, but
the real-time layout on the left obfuscates the performance
problems. Our layout clearly highlights issues by coloring
them accordingly, and it makes the relationship between
the algorithm and the timing problems more clear. The
remainder of this section describes the ordering constraints
and layout rules that make this possible.

Lamport Clocks. Logical structure is built upon definitions
and relations from Lamport [25]. The happened-before relation
(→) is a partial order where (1) for events a, b of the same
process, a → b if a occurs before b and (2) for matching
send and receive events s, r, s → r. Lamport calls events
c, d concurrent if they are not ordered, i.e., c 6→ d, d 6→ c. The
Lamport clock is a function C mapping a number to each
event such that for events a, b, C(a) < C(b) if a → b.
This constraint is called the clock condition. Our assigned
logical steps satisfy Lamport’s clock condition, but we add
further constraints when Lamport clocks only provide a
partial ordering. Our constraints aim for a more intuitive
alignment.

Simultaneous Operations. Rather than assuming that each
event happens as early as possible, we aim to discover the
operations (paired entry and exit events) that conceptu-
ally should happen simultaneously. For example, all send
operations at one level of a binomial tree broadcast are
conceptually simultaneous. As another example, consider
MPI collectives. A collective communication operation is one
in which all processes in an application must participate at
once. Collectives are useful as they allow applications to
easily leverage highly optimized implementations of com-
plex, distributed algorithms. We assume all operations in the
same blocking collective1 occur simultaneously. From the

1. We do not support non-blocking collectives. Hereafter when we
refer to ‘collectives’, we assume them to be blocking.

developer’s point of view, individual calls on each process
occur together as a logical abstraction. Rooted collectives
like MPI_Bcast imply an order between the call on the root
and calls on all other participating processes, but we avoid
defining collective-internal happened-before rules in order
to match the way collectives are invoked.

Phases. It is often intuitive to think of the communication of
a program in terms of different phases, e.g., a neighborhood
exchange or a global reduction (i.e., we assume a very
fine grained definition of a phase). To match this intuition,
we ensure phases, whether detected by our algorithm or
specified by the user, do not overlap. In terms of the clock
condition this means that for phases P → Q with operations
pi, qi, respectively, C(pi) < C(qj)∀pi ∈ P, qj ∈ Q. This
condition ensures that the ordering within one phase is not
affected by other phases.

We focus on communication operations because they
impose happened-before relations between processes and
thus contribute to a global happened-before structure built
from single-process timelines. All other local, per-process
events are concatenated into a single operation that covers
the entire time between messages. The remainder of this
section describes the two steps of logical structure creation:
partitioning into phases (or sub-phases) and assigning logi-
cal time steps.

3.1 Phase Partitioning

While the primary reason for organizing all communication
operations into phases is to match the intuition of pro-
gram developers with a happened-before relation between
phases, this step also has a number of practical advantages.
For example, partitioning the trace into phases makes the
computation and analysis a per-partition rather than a per-
trace activity, significantly simplifying and accelerating the
analyses of Sections 3.2 and 4. We present graph-based
algorithms to first identify inseparable groups of operations
and then merge them to define phases. In general, phase de-
tection is a difficult challenge [26], [27], [28], [29], [30], [31],
especially since the “correct” partitioning is often subjective
or ill-defined. Consequently, we give users the additional
option to specify their own partitioning to accommodate
application-specific details.

Mandatory Partitions. Our algorithm starts by identifying
mandatory partitions: groups of operations that cannot be
separated due to ordering constraints or semantic reasons.
Given a set of MPI operations with their happened-before
relations represented as a directed acyclic graph (DAG),

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 4

Steps

Leaps

Fig. 3: Merging Leaps in LULESH. The graph in terms of leaps is shown on top. The bottom shows the individual processes
as they would be stepped with that leap graph. The result of the strongly connected component merge is the left image.
The gray leap merges in its succeeding leaps until it contains all processes, resulting in the center image. The remaining
purple leap is significantly closer to the gray leap than the next one (not shown), so it is merged backwards, resulting in
the right image.

we construct the partitioning in a bottom-up fashion. We
initially assign each operation its own partition (Fig. 2a).
Semantically, a matching send and receive, or each message,
should belong to a single partition, and we merge their
corresponding partitions (Fig. 2b). Similarly, the partitions
of all operations in the same collective invocation should be
merged. These merges can introduce cycles in the graph, as
shown in the figure, which prevents a linear ordering among
the partitions and thus the ability to applied happened-
before ordering between partitions. To restore a linear order
we merge all partitions that form a strongly connected
component, restoring the partition graph to a DAG (Fig. 2c).
The resulting partitions are minimal groups of operations
that support a total order without separating messages and
collectives. In practice, the resulting partitions are often
fine-grained as even simple operations like allreduce can
be subdivided significantly. Since this typically does not
match the intuition or intent of the developers, we present
additional techniques to further merge partitions if desired.

Waitall Partitions. One common construct in MPI appli-
cations is MPI_Waitall, which causes a process to wait
until a given set of prior MPI operations has completed.
We merge all partitions containing operations associated
with the same MPI_Waitall as an additional semantic con-
straint. If these operations MPI_Waitall were not recorded
in our traces, we determine the set heuristically and make
this merging optional in case the heuristic does not apply.
We assume that all calls associated with the MPI_Waitall
are not interspersed with receive operations or collective,
wait, or test calls. Thus, we assume that all send operations
between the last such call and an MPI_Waitall belong
to that MPI_Waitall. The reason receive operations are
included in the former list is that in the trace any receive
call associated with the MPI_Waitall ends during that
MPI_Waitall.

Leap Partitions. There may exist messages that do not
result in a strongly connected component in the sense of
Fig. 2, yet nevertheless logically belong together as part
of the same phase. Fig. 3 shows an example taken from
an eight process trace of LULESH [3]. Many of the com-
munication operations have been grouped, resulting in the
multi-message blue partition. However, a few messages
on either side are isolated and thus are not included. In

bulk synchronous codes, such as LULESH, we expect all
processes to participate in each communication phase and
thus we provide the option to merge partitions until this
property is satisfied. More formally, we define a leap as all
the partitions with the same graph distance from the sources
of the partition DAG2. We merge partitions until each leap
contains operations from all processes using Algorithm 1.

complete_leaps (partitions);
all leaps = compute_leaps (partitions);
k = 0;
while k < |all leaps| do

leap = all leaps[k];
changed = TRUE;
while changed and not complete (leap) do

changed = FALSE;
for p in partitions (leap) do

incoming = leap_distance (p, k-1);
outgoing = leap_distance (p, k+1);
if incoming� outgoing then

merge_into_previous_leap (p);
changed = TRUE;

else
for c in children(p) do

if will_expand (c, leap) then
absorb_partition (p, c);
changed = TRUE;

end
end

end
end

end
if not complete (leap) and force merge then

absorb_next_leap (leap);
else

k = k+1;
end

end
Algorithm 1: Complete leaps through merging partitions.

Starting from the first leap, we determine whether it is
complete (contains operations from all processes). Should
this not be the case, we begin processing its member parti-
tions. Each partition computes its incoming leap distance as
the minimum of the first operation entry time for each of its

2. Intuitively, the leap is similar to rank in a graded poset, but we
avoid that term due to confusion with MPI ranks.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 5

(a) A Vampir visualization of a stencil in the pF3D
communication benchmark.

(b) We create a happened-before
graph of only send operations.

(c) Stride boundaries are set based
on graph distance.

(d) We use strides to po-
sition send operations in
logical time.

1

2

3

4

5

6

7

0

(e) Send operations are positioned at the end of
their stride. Receive operations are filled from
the earliest step that meets happened-before con-
straints.

1

2

3

4

5

6

7

0

(f) We insert aggregated operations (green) before
each communication operation. Now all real time
is represented through operations. We use this
property for analysis in Section 4.

Fig. 4: Step Assignment. Send operations are yellow. Receive operations are blue. Alternating white and gray backgrounds
denote stride boundaries.

processes and the operation exit time of their previous oper-
ation in the partition’s previous-leap neighbors. Similarly, its
outgoing leap distance is the minimum of the last operation
exit time for each of its processes and the operation entry
time of the next operation in the partition’s next-leap neigh-
bors. By construction, any previous leap is complete and
thus we prefer merging at the leap – absorbing un-processed
partitions from the next leap – to merging backwards –
extending completed leaps. In practice, we only consider
merging backwards if the incoming leap distance is more
than an order of magnitude (factor of ten) smaller than the
outgoing one. Once the direction of a potential merge has
been established we always execute a backward merge, but
only absorb a partition in from the next leap if this expands
the set of processes participating in the current leap. In this
manner the current leap can shrink or grow and we repeat
this process until the leap stabilizes. Depending on the
application, the resulting stable leap may still not contain
all processes. In this case we allow the user to either force
all corresponding partitions to merge in all their successors
before restarting the leap merge algorithm or to accept the
incomplete leap and continue.

In the example of Fig. 3, the gray partition on the left
successively merges in the succeeding partitions until it has
merged in the blue one and thus contains all eight processes.
As this completes the leap, the algorithm moves onto the
next leap which contains only the purple partition. This
partition merges backward since in this case it is signifi-
cantly closer to the incoming gray one than to the outgoing
leap (not shown). The particular threshold to decide the
merge direction and whether to force completed partitions
should reflect the user’s knowledge (or expectations) of the
application in order to create the most intuitive partitioning.

Leap merging should be performed when the user sus-
pects that the application generally engages all processes at
a coarse scale. This is true in bulk synchronous codes where
it is reasonable to assume the partition DAG is a path and
each phase would be understood to contain all processes.
However, this would also be true in cases where the par-
tition DAG branches, but every process can be assumed to

be active in one of the parallel phases. Forcing the merge
should be done when the user is very confident all processes
are active throughout the trace at phase-granularity.

While the algorithms described above may not accu-
rately detect all phases, they are simple to implement, easy
to adapt, and in our experience create intuitive partitions
well-aligned with the developer’s intention for all practical
cases.

3.2 Local and Global Step Assignment
In Section 3.1 we create a DAG of partitions containing
related communication operations. Next, we assign logical
steps within each partition locally, then globally across
partitions, defining the logical structure.
The local step assignment follows three simple principles:

1) All happened-before relationships must be strictly
maintained, i.e., a→ b implies step(a) < step(b);

2) All operations of the same collective invocation happen
simultaneously; and

3) Send operations have a greater impact than receive
operations on the communication structure.

Item 3 is a consequence of the fact that the order of receive
operations is not always uniquely defined by the program
and some operations, such as MPI_Waitall, may serve
as the receiving operation for multiple send operations.
Consequently, we initially use only the send and collective
operations to define the communication structure. Once the
local (per-partition) order for these operations has been de-
termined we introduce the receive operations and ultimately
the non-communication operations to the per-partition step
assignment. We use an eight process run of the pF3D
communication benchmark, shown in Fig. 4, as a working
example throughout our explanation.

Strides. The send and collective operations in a trace typi-
cally define most of the communication structure and thus
we start the local step assignment by grouping these into
strides. Strides are defined by the graph distances from the
beginning of the partition considering only the send and
collective operations. More specifically, we create a sparse

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 6

version of the happened-before graph of each partition that
contains only the send operations, collective operations,
and their aggregated dependencies (Fig. 4b). To maintain
the condition that collectives occur simultaneously, we note
that any happened-before dependencies on any individual
operation in this collective must be applied to all operations
in the collective at this stage. We next group send and
collective operations according to their stride (Fig. 4c). We
align the strides in logical time and assign preliminary steps
accordingly (Fig. 4d). Not all processes contain an operation
in all strides.

After send operations are positioned, we re-introduce
receive operations so that the ordering is preserved. All
send and collective operations within a stride are assigned
the same step, and receive operations are placed as early
as possible while still maintaining their happened-before
relationships (Fig. 4e). Finally, we insert aggregated non-
communication operations representing all processing be-
tween communication operations (Fig. 4f) such as compu-
tation or idling.

Defining these aggregated operations allows us to ac-
count for all physical time spanned by the trace, which is
helpful when defining the temporal metrics in Section 4.
To assign global steps, we shift the local step assignment
within each partition to be after all the steps occupied
by its predecessors in the partition DAG, enforcing global
happened-before relationships.

3.3 Isend Coalescing

Throughout our structure extraction pipeline, we have de-
fined an operation to be the matching enter and exit of a
single procedure call. However, we have found it useful
to optionally coalesce uninterrupted, unbounded sequences
of neighboring MPI_Isend enter and exit records into a
single operation before starting our extraction routine. The
resulting operation has an enter time of the first MPI_Isend
and the exit time of the last. Messages associated with any
of the composite calls become associated with the coalesced
operation. As individual MPI_Isend operations are short
and non-blocking, coalescing them can reveal structure that
is obscured when processes have different MPI_Isend in-
vocation counts without misrepresenting dependencies. In
general, we recommend performing coalescing unless the
user requires more detail about the individual calls and
knows they should be aligned at the level of the individual
operation.

Fig. 5 shows the results of our structure extraction for
a single partition of an eight process SMG2000 [5] trace
with and without coalesced MPI_Isends. In Fig. 5a, the
MPI_Waitall operation happens at different steps for each
process depending on how many messages that process is
waiting for (which depends on the part of the boundary
the process computes) and where in the order of the send-
ing processes each of those send operations falls. Fig. 5b
effectively eliminates these concerns, perfectly aligning all
send operations and all receive operations. This depicts
the symmetry of the exchange. Encouraging comparisons
between like operations without violating ordering is also
beneficial when metrics based on these comparisons are
applied (see Section 4 and Section 5.3).

(a) (b)

Fig. 5: One partition of an eight process SMG2000 trace, (a)
without and (b) with coalescing of MPI_Isends.

4 TEMPORAL METRICS

By design, we avoid relying on wall-clock timing infor-
mation when determining the logical structure of a trace.
This produces a well-aligned version of the trace where the
relationship between potentially simultaneous operations is
clear. It also avoids problems with clock skew and syn-
chronization. Ultimately, however, the timing of operations
determines where delays or bottlenecks occur and which
part of the program is responsible. We therefore preserve
the temporal information by computing metrics from times-
tamps. In the visualization, these metrics can be mapped
onto the logical structure as highlights. This makes delays
easy to see without obscuring the logical layout.

Lateness. Simple metrics, such as the entry time, exit time,
or duration of an operation, can be computed directly with-
out the logical structure. However, the true power of our
technique comes from comparing such simple per-operation
metrics within logical partitions. For example, comparing
the exit times of operations in the same logical step allows
one to track delays. In particular, we define the lateness of
an operation as the difference between its own exit time and
that of the earliest operation in its step in the partition:

lop = op.exit−min{x.exit|op, x ∈ P, x.step = op.step}

where P is the set of operations within a partition. In bulk-
synchronous codes leaps typically contain operations from
all processes and thus lateness is calculated globally. This
can also be enforced by a post-stepping merge across shared
global steps. However, for codes with different process-
groups that perform separate and distinct actions, the parti-
tion ensures that only related operations are compared.

Fig. 6 shows a portion of a 16 process MG trace vi-
sualized in Ravel with communication operations colored
by the lateness metric. Ravel displays both a traditional
physical timeline and a logical timeline. Both views show a
delay in a non-communication operation on the first process
which propagates to other processes. The logical time view
highlights a propagation of lateness along processes and
along messages to other processes. This leads us to classify
the conditions that contribute to the lateness of an operation
depending on whether the operation in question is receiving
a message or not. A late, non-receiving operation whose
predecessor is not late is likely responsible for the delay,
perhaps due to load imbalance in the computation (Fig. 7a).
If the predecessor is late as well (Fig. 7b), lateness has been
propagated and was likely caused upstream. Similarly, a late
receiving operation whose corresponding sending operation
is not late (Fig. 7c) indicates that the message has either been
delayed in flight, e.g., due to contention in the network,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 7

Fig. 6: Logical (top) and physical (bottom) time visualization
of a 16 process execution of MG. Communication operations
are colored using the lateness metric. The first process
becomes late during an aggregated non-communication op-
eration. The lateness spreads through messages to the other
processes.

or is late because of the processing needed to perform
the receive, which could be caused by, e.g., a slow buffer
allocation. Finally, a late receive operation with a matching
late send operation indicates lateness propagation across
processes (Fig. 7d). The aggregated non-message operations
created in global step assignment are necessary to differ-
entiate between in-process and across-process lateness. One
interesting and useful property of lateness is that it naturally
“resets” once all processes become equally late. For example,
a tree-structured reduction rooted at a single process resets
lateness, as does a barrier or a simple load imbalance that
propagates globally through neighbor exchanges.

Differential Lateness. Lateness provides a good high level

Lateness in Event

(a) A non-receiving opera-
tion is late but its predeces-
sor is not, implying the oper-
ation itself caused the delay.

Lateness Propagated Along Process

(b) A non-receiving opera-
tion is late and so is its prede-
cessor, implying the lateness
was propagated.

Lateness in Message

(c) A receiving operation is
late but the corresponding
sending operation is not, im-
plying that the lateness was
created in flight.

Lateness Propagated Along Message

(d) A receiving operation is
late and so is its match-
ing send operation, implying
that we waited for a late mes-
sage.

Fig. 7: Creation and propagation of lateness for non-
receiving (a,b) and receiving (c,d) operations.

overview of potential root causes of delays. Especially
when coupled with the visualizations in Ravel, a user can
quickly find the first late operation and continue a more
detailed analysis from there. However, in very large or com-
plex traces, identifying these patterns becomes challenging,
meaning techniques are necessary to directly identify the
likely cause of a problem. To this end we propose to ana-
lyze differential lateness: the difference between the lateness
attributed to prior operations and the lateness at exit time:

dop = max{lop −max{lx|x→ op, @y s.t. x→ y ∧ y → op},
0}

Instead of showing all operations that are late, differential
lateness highlights the operations and processes that cause
the lateness. Note that we do not allow negative lateness:
while it can highlight some operations that compensate for
earlier problems, negative lateness primarily occurs at reset
boundaries leading to confusing and difficult to interpret
configurations.

5 EVALUATION

We execute applications on two radically different architec-
tures: a large Blue Gene/Q (BG/Q) installation as well as
an Infiniband cluster with 12 Sandy Bridge cores per node.
In the latter, the cores are split across two sockets, with 6
cores per socket. The BG/Q system uses IBM’s compute
node kernel OS and IBM’s BG/Q MPI implementation. The
Infiniband cluster uses a Red Hat derived Linux distribution
and the MVAPICH MPI implementation. On both machines
we obtain our traces in Open Trace Format 2 (OTF2) [32]
using Score-P [33] or Open Trace Format (OTF) [34] using
VampirTrace [35].

Our structure extraction algorithm is implemented in
Ravel, a desktop application. As our algorithm operates
on messaging operations, the number of messages rather
than the number of processes or the total time spanned
by the trace is the limiting factor in terms of scale. The
current implementation is memory bound by the number
of messages in the trace due to a preprocessing step which
matches messages to operations.

5.1 MPI Collective Operations

Collective algorithms are an important part of MPI because
they allow groups of processes to work together for ef-
ficient global communication. For example, MPI provides
an MPI_Allreduce algorithm that performs a distributed
parallel sum (or other associative operation) and puts its
result on all processes. From a visualization perspective,
collectives have dense communication patterns, with many
messages sent between processes at around the same time.
This poses a challenge for existing trace tools, especially
when the system is noisy and dependence chains across
MPI processes are perturbed. We use these as a case study
of our tool to demonstrate its ability to correctly determine
logical structure and to show how we can display collective
operations in an intelligible manner. For our experiments,
we used libNBC [8], an open source implementation of
non-blocking MPI collective operations. We chose libNBC

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 8

because the algorithms it implements for its collectives are
well understood, allowing us to verify our logical structure.

We first consider the binomial tree implementation of
MPI_Allreduce. Fig. 8 shows the unprocessed trace as
visualized by Vampir and its extracted logical structure
as visualized by Ravel. The algorithm performs a parallel
reduction with a binomial tree embedded in the MPI ranks,
then it broadcasts the global sum back along another bi-
nomial tree. Our logical structure captures the send-receive
operation pairs at each level of the tree, despite the overlap
observed in the physical time visualization. All of our par-
titioning options yield the same logical steps but different
partitions. In the figure we show the partitioning resulting
from mandatory merging and merging across global steps.

Fig. 8: Visualization of 64 process binomial tree
MPI_Allreduce in physical time by Vampir (top) and
logical time by Ravel (bottom). In logical time, we color
by communication partition. We are able to identify the
binomial tree levels though they overlap in physical time.

Lateness

Fig. 9: Ring algorithm MPI_Allreduce on 64 processes.
Coloring is done by lateness, showing propagation. We find
two operations with high differential lateness (circled).

Fig. 9 shows the logical time view of a ring imple-
mentation of MPI_Allreduce, colored by lateness. In this

linear-time algorithm, each of the P processes sends to its
neighbor and accumulates a sum from each rank’s contribu-
tion. Again our logical structure accurately determines the
P rounds of this communication. We further observe the
spread of lateness from the 45th process and its continued
effects through the remainder of the rounds. Also visible
are a handful of late processes in the final rounds. The
circled steps were the only ones calculated to have high
differential lateness, indicating these were the sources of the
other delays. Closer examination reveals lateness is injected
at a messaging operation, possibly due to congestion on the
network.

5.2 Massively Parallel Merge Trees

Merge trees are topological structures that can aid in the
analysis of very large and complex parallel simulations [36],
[37], [38]. We consider a massively parallel algorithm to
compute them in situ [9], which avoids the limitations
and penalties of writing out the data to be analyzed post
mortem. Previously, we demonstrated how visual analysis
of logical structure helped locate a sub-optimal message
ordering in an early version of the merge tree algorithm [2].
Here, we analyze the validity of the logical structure we
extract from traces of this code.

In the merge tree algorithm, each process running the
simulation must compute its local merge tree over the
simulation features of interest. These local merge trees are
sent to gather processes which combine the local trees and in
turn send to the next level gather processes. The algorithm
proceeds in these gather rounds until a global merge tree
is computed. The gather processes are organized as a k-ary
tree, where one process of a set of k siblings at one level acts
as the group’s gather process at the next level. At the end
of each round, the intermediate merge tree is sent not only
to this gather process, but also down along the tree to the
leaves.

We obtained communication phase information from the
developers and compared it to our partitioning using the
leap merge and merging across global steps. Fig. 10 shows a
4,096 process, 8-ary merge-tree where operations are colored
by membership in their logical partition as determined by
the developer in Fig. 10a and our algorithm in Fig. 10b.
The main difference is that our algorithm breaks the initial
phase into the up (to the gather process) and down (from
the gather process) partitions, but even with this difference,
the resulting logical structures are highly similar. In both
images, the first level of the gather tree structure is appar-
ent from the eight parallelograms stacked vertically in the
process space – indicating the eight parallel subtrees.

The parallel merge tree algorithm uses asynchronous
primitives for its communication. However, an early devel-
opment version of the algorithm used synchronous primi-
tives. Closer examination of this early implementation re-
veals some of the shortcomings of a strict adherence to the
Lamport happened-before ordering. Fig. 11b shows eight
gather groups of eight leaves at the beginning of a 4,096
process, 8-ary merge tree trace with partitioning given by
the developers. In the first step, the (level-0) leaves send to
their level-1 gather process which responds with corrections
and subsequently sends the result to the level-2 gather

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 9

(a) Logical steps resulting from developer partitions.

(b) Logical steps resulting from our partitions.

Fig. 10: 4,096 process merge tree, colored by partitioning. In
(a) we use partitions from the merge tree developers. In (b)
we derive partitions using our algorithm. The partitioning
and resulting logical structure are highly similar.

process. However, the top set of eight leaves is later than
its sibling groups for the level-1 gather. The level-1 gather
processes of those siblings send their results before the
topmost level-1 gather has received all messages from its
children. As a result the early receive operation causes a mis-
alignment of the steps with the remaining communication
operations of the top-most process being shifted towards the
right. We observe this effect amongst multiple gather groups
with varying levels of severity, seen as horizontal lines of
different lengths in the full view (Fig. 11a) and thus shifting
all the send operations back to the leaves several steps to
the right. This is a direct consequence of the happened-
before ordering and thus cannot be avoided. Nevertheless,
in this case the early message does not actually change
the order of computation. Thus, potentially allowing the
stepping algorithm to violate the happened-before relation
to create the expected regular patterns could likely result in
a more intuitive visualization and more meaningful metrics.
However, it is not clear under which circumstances such
a re-ordering should be permissible and this will be the
subject of future research.

5.3 Algebraic Multigrid
Algebraic multigrid techniques solve sparse linear systems
that may or may not be associated with an actual spatial
grid. The method begins with a fine-grained grid or matrix
that is successively coarsened until it can be solved with
reasonable error. It interpolates back from the coarsened
solution to the fine-grained one. This so-called V-cycle is
repeated until it has converged. We examine an algebraic
multigrid method implemented in the hypre scalable solver
library [10], via the AMG2013 benchmark, which is part

(a) Entire trace.

(b) Detail shows shifting of steps based on happened-before
ordering.

Fig. 11: Trace from an older implementation of the merge
tree, on 4,096 processes. In (a), the entire merge tree trace is
shown colored by lateness. The portion in the black box is
shown in more detail in (b). The top gather process receives
messages from the gather processes of faster groups. To en-
force the true ordering of operations, send operations of the
initial gather must be shifted toward the right, preventing
logically parallel communication from being assigned the
same step.

of the CORAL [11] benchmark suite. This gives us an
opportunity to verify our structure algorithm for a more
complicated example.

Fig. 12 shows a portion of the logical structure we
extracted, using the leap merge option, from a 64 process
trace of the AMG2013 solver algorithm executed on the
BG/Q machine. The operations are colored by partition.
Our structure separates the first 54 processes into distinct
partitions from the remaining eight. This led us to examine

Fig. 12: Partitioning of AMG2013’s solver algorithm exe-
cuted on 64 processes. The last eight processes partition
independently of the others.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 10

Fig. 13: Partitioning of a single iteration of the AMG2013
solve, focusing on the first 54 processes. The individual par-
titions match well with what we expect from the levels of the
V-cycle. We see the amount of communication increase as
processes in coarser levels gain more neighbors. Eventually
some processes become inactive due to coarsening, result-
ing in white gaps across the blue and lavender partitions
preceding the brown one.

the rest of the structure and discover that the two process
groups never interacted within the solve. Upon consulting
with the development team and verifying the results, we
learned that the final eight processes are assigned to the
anisotropic portion of the domain, which explains why
they behave differently and independently, as found by our
logical structure.

We narrow our focus to a single iteration, shown in
Fig. 13, once again colored by partition. For simplicity we
show only the 54 process partition and omit message lines.
In the solve, each level performs a relaxation step and
one to two matrix-vector products. Our algorithm separates
these in partitioning. Initially, the partitions are short, but
as the grid gets coarser, participating processes need to
send information to more neighbors, resulting in longer
partitions representing the increased communication. At the
same time, the coarsening leaves some processes without
work, seen as white gaps (no operations) across the blue
and lavender partitions preceding the long brown one.
This behavior is expected, suggesting the logical structure
extracted by our partitioning approach is consistent with
AMG’s algorithm design.

The AMG2013 solve cycle generally uses a sequence
of MPI_Irecvs, MPI_Isends, and an MPI_Waitall. This
characteristic makes it a good candidate for isend coalesc-
ing (Section 3.3) to examine lateness. Fig 14a shows the
operations of a single solve cycle colored by differential
lateness. The coarse partitions where some processes are
not participating are apparent from the white gaps in the
operations across ranks 0 and 4, as well as the denser lines
in those steps amongst the other processes that are sending
to more neighbors. We observe the first 40 processes exhibit
high differential lateness in the computation following the
first communication volley, indicating an imbalance. We
also note high differential lateness in a few MPI_Waitall
operations, circled in white.

Examining lateness instead (Fig. 14b), we see the prop-
agation of lateness from these abnormal MPI_Waitalls.
We also note the lateness overview at the bottom reveals
a periodic pattern of lateness over logical time. The number

(a) The first 40 processes exhibit high differential lateness
early on due to greater computational requirements. A few
MPI_Waitall operations (annotated with white circles) also
show high differential lateness.

(b) The overview on the bottom shows eleven repetitions of
the lateness profile, corresponding to the iterations of the V-
cycle. Lateness spreads from the operations of high differential
lateness in Fig. 14a.

Fig. 14: Logical structure of an AMG2013 solver cycle on 64
processes.

of repetitions corresponds to the number of iterations of the
V-cycle reported by the run, indicating this is a recurrent
issue.

We focus on one of these MPI_Waitall operations
in Ravel’s physical time view (Fig. 15). The operation is
selected in both the logical and physical time views with
the associated message lines highlighted in yellow. From
our logical steps and lateness metrics, we were able to locate
this aberrant ∼12ms MPI_Waitall quickly and learn that
its expected behavior is like the short MPI_Waitall calls
before it rather than the longer ones after it. When differ-
ential lateness is high for a receiving operation, we expect
lateness to be due to the message itself (Fig. 7c). In this case,
all the messages come from processes on the same node so
the network could not have contributed to the lateness. Fur-
thermore, other MPI_Waitall calls complete much more
rapidly. We note that the late MPI_Waitall does not com-
plete until the next round of MPI_Waitalls begin on its
senders. This leads us to hypothesize the behavior may be
an asynchronous progress issue – the MPI_Waitall occurs
late enough that the MPI implementation does not handle
its matching outstanding MPI_Isends until the next step’s
MPI_Waitalls. We run AMG2013 again, this time setting
the PAMID_ASYNC_PROGRESS environment variable, which
uses a separate thread to make asynchronous progress at
the cost of potentially greater latency. The differentially late
MPI_Waitalls are no longer present in the resulting trace

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 11

Fig. 15: Ravel logical and physical view of an MPI_Waitall
with high differential lateness in the AMG2013 solve cycle.
Messages to the MPI_Waitall are highlighted in yellow.

Fig. 16: Logical structure of an AMG2013 solve cycle on 64
processes with an asynchronous progress thread running.
Compared to Fig. 14b, the lateness due to MPI_Waitalls is
gone, leaving only the computation lateness.

(Fig. 16), leaving only computation-based lateness.

6 CONCLUSION AND FUTURE WORK

We have presented a new approach for analyzing execu-
tion traces obtained from message passing programs. We
extract a logical structure, meant to capture the intended
ordering of operations in a program. This technique uti-
lizes happened-before relationships not only on the scale
of individual events, but also on the scale of communication
phases and even concurrent send operations. We explicitly
hide timing information in our logical structure to show re-
lationships among operations, and we use temporal metrics
mapped onto this structure to highlight timing problems
without clutter. In particular, we exploit the logical struc-
ture by capturing each event’s delay relative to its peers,
providing an abstract view of lateness. Using the happened-
before relationship encoded in the logical structure, we are
able to both pinpoint the original cause of a bottleneck and
to study its propagation.

Through a series of case studies, we have demonstrated
that our algorithm can identify structures across a variety
of communication profiles. We have shown that our metrics
correctly pinpoint communication delays and their sources.
However, we also exhibited an example where derived
structure was non-ideal (Fig. 11), indicating there are cases
not covered by our algorithm. In future work, we intend
to improve our heuristics for message-passing programs,

expand the types of operations and dependencies handled
by our structure extraction algorithm, and further leverage
logical structure for detection of performance issues.

ACKNOWLEDGMENTS

The authors would like to thank Ulrike Yang and Aaditya
Landge for their guidance regarding AMG2013 and the
parallel merge tree application respectively.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 and sup-
ported by Office of Science, Office of Advanced Scientific
Computing Research as well as the Advanced Simulation
and Computing (ASC) program.

REFERENCES

[1] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchen-
bach, “VAMPIR: Visualization and analysis of MPI resources,”
Supercomputer, vol. 12, no. 1, pp. 69–80, 1996.

[2] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele,
M. Schulz, and B. Hamann, “Combing the communication hair-
ball: Visualizing large-scale parallel execution traces using logical
time,” IEEE Trans. on Vis. and Comp. Graphics, Proc. InfoVis ’14,
no. 12, 2014.

[3] “Hydrodynamics Challenge Problem, Lawrence Livermore Na-
tional Laboratory,” Tech. Rep. LLNL-TR-490254.

[4] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter,
and E. A. Williams, “Filamentation and forward brillouin scatter
of entire smoothed and aberrated laser beams,” Physics of Plasmas,
vol. 7, no. 5, pp. 2023–2032, 2000.

[5] Accelerated Strategic Computing Initiative, “The SMG2000 bench-
mark,” 2001.

[6] “NAS parallel benchmarks (NPB).” [Online]. Available: https:
//www.nas.nasa.gov/publications/npb.html

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, and R. A. Fatoohi, “The NAS parallel benchmarks,” The
International Journal of Supercomputer Applications, vol. 5, no. 3, pp.
63–73, 1991.

[8] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and
Performance Analysis of Non-Blocking Collective Operations for
MPI,” in Proceedings of the 2007 International Conference on High
Performance Computing, Networking, Storage and Analysis, SC07.
IEEE Computer Society/ACM, Nov. 2007.

[9] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla,
J. Chen, and P.-T. Bremer, “In-situ feature extraction of large
scale combustion simulations using segmented merge trees,” Proc.
ACM/IEEE Conf. on Supercomputing (SC14), SC’14. Nov. 2014.

[10] R. Falgout, J. Jones, and U. Yang, “The design and implementation
of hypre, a library of parallel high performance preconditioners,”
in Numerical Solution of Partial Differential Equations on Parallel
Computers, A. Bruaset and A. Tveito, Eds. Springer-Verlag, 2006,
vol. 51, pp. 267–294.

[11] “Collaboration of Oak Ridge, Argonne, and Livermore benchmark
codes,” https://asc.llnl.gov/CORAL-benchmarks.

[12] B. Mohr and F. Wolf, “KOJAK: A tool set for automatic perfor-
mance analysis of parallel programs,” in 9th International Euro-Par
Conference (EUROPAR), Klagenfurt, Austria, Aug. 2003.

[13] F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, W. Frings,
K. Fürlinger, M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore,
M. Pfeifer, and Z. Szebenyi, “Usage of the SCALASCA toolset
for scalable performance analysis of large-scale parallel applica-
tions,” in Tools for High Performance Computing. Springer Berlin
Heidelberg, 2008, pp. 157–167.

[14] D. Böhme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the root
causes of wait states in large-scale parallel applications,” in Proc.
of the 39th International Conference on Parallel Processing (ICPP), San
Diego, CA, USA. IEEE Computer Society, Sep. 2010, pp. 90–100.

[15] O. Morajko, A. Morajko, T. Margalef, and E. Luque, “On-line per-
formance modeling for mpi applications,” in Euro-Par 2008 Parallel
Processing, ser. Lecture Notes in Computer Science, E. Luque,
T. Margalef, and D. Bentez, Eds. Springer Berlin Heidelberg,
2008, vol. 5168, pp. 68–77.

https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://asc.llnl.gov/CORAL-benchmarks

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 12

[16] M. Schulz, “Extracting critical path graphs from mpi applications,”
in Cluster Computing. IEEE International, September 2005, pp. 1–
10.

[17] D. Boehme, F. Wolf, B. R. de Supinski, M. Schulz, and M. Geimer,
“Scalable critical-path based performance analysis,” Parallel and
Distributed Processing Symposium, pp. 1330 – 1340, 2012.

[18] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable
performance visualization with Jumpshot,” High Performance Com-
puting Applications, vol. 13, no. 2, pp. 277–288, Fall 1999.

[19] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to
visualize and analyze parallel code,” 1995.

[20] C. Schaubschläger, D. Kranzlmüller, and J. Volkert, “Event-based
program analysis with DeWiz,” in Proceedings of the Fifth Interna-
tional Workshop on Automated Debugging AADEBUG2003, 2003.

[21] T. J. LeBlanc, J. M. Mellor-Crummey, and R. J. Fowler, “Analyzing
parallel program executions using multiple views,” J. Parallel
Distrib. Comput., vol. 9, no. 2, pp. 203–217, Jun. 1990.

[22] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of
parallel applications computation phases,” in Proc. of the 23rd IEEE
Intl. Parallel and Distributed Processing Symp., 2009, pp. 1–11.

[23] T. Gamblin, R. Fowler, and D. A. Reed, “Scalable methods for
monitoring and detecting behavioral equivalence classes in sci-
entific codes,” in Proc. of the 22nd IEEE Intl. Parallel and Distributed
Processing Symp., 2008, pp. 1–12.

[24] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and D. A.
Reed, “Clustering performance data efficiently at massive scales,”
in Proc. of the 24th ACM Intl. Conf. on Supercomputing. New York,
NY, USA: ACM, 2010, pp. 243–252.

[25] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul.
1978.

[26] M. Casas, R. M. Badia, and J. Labarta, “Automatic phase detection
of MPI applications,” Parallel Computing: Architectures, Algorithms,
and Applications, vol. 38, pp. 129–136, 2007.

[27] ——, “Automatic structure extraction from MPI applications trace-
files,” in 13th International Euro-Par Conference, vol. 4641/2007,
Rennes, France, August 28-31 2007, pp. 3–12.

[28] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of
parallel applications computation phases,” in International Parallel
and Distributed Processing Symposium (IPDPS’09), Rome, Italy, May
25-29 2009.

[29] G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta, “On the
usefulness of object tracking techniques in performance analysis,”
in Supercomputing 2013 (SC’13), Denver, CO, November 17-22 2013.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically characterizing large scale program behavior,” in Tenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), San Jose, CA, Oc-
tober 5-9 2002, pp. 45–47.

[31] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE Micro: Micro’s Top
Picks from Computer Architecture Conferences, November-December
2003.

[32] D. Eschweiller, M. Wagner, M. Geimer, A. Kn upfer, W. E. Nagel,
and F. Wolf, “Open Trace Format 2: The next generation of scalable
trace formats and support libraries,” in Applications, Tools, and
Techniques on the Road to Exascale Computing, ser. Advances in
Parallel Computing, K. De Bosschere, E. H. D’Hollander, G. R.
Joubert, D. Padua, F. Peters, and M. Sawyer, Eds. IOS Press, 2012,
pp. 481–490.

[33] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. Nagel,
Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschter, M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A joint
performance measurement run-time infrastructure for Periscope,
Scalasca, TAU, and Vampir,” in Tools for High Performance Comput-
ing 2011, H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch,
Eds. Springer Berlin Heidelberg, 2011, pp. 79–91.

[34] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel,
“Introducing the open trace format (OTF),” in Proc. of 6th Int. Conf.
on Comp. Sci., ser. ICCS’06. Springer-Verlag, 2006, pp. 526–533.

[35] TU Dresden Center for Information Services and High
Performance Computing (ZIH), “VampirTrace 5.14.2 user
manual,” http://www.tu-dresden.de/zih/vampirtrace,
March 2013.

[36] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell,
“Interactive exploration and analysis of large scale simulations

using topology-based data segmentation,” IEEE Trans. on Visual-
ization and Computer Graphics, vol. 17, no. 9, pp. 1307–1324, 2011.

[37] J. Bennett, V. Krishnamurthy, S. Liu, V. Pascucci, R. Grout, J. Chen,
and P.-T. Bremer, “Feature-based statistical analysis of combustion
simulation data,” IEEE Trans. Vis. Comp. Graph., vol. 17, no. 12, pp.
1822–1831, 2011.

[38] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thomp-
son, H. Yu, F. Zhang, and J. Chen, “Combining in-situ and in-
transit processing to enable extreme-scale scientific analysis,” in
Proc. ACM/IEEE Conference on Supercomputing (SC12), 2012.

Katherine E. Isaacs is a Ph.D. candidate at the University of California,
Davis researching information visualization techniques for performance
analysis. In 2012 she was awarded a Department of Energy Office
of Science Graduate Fellowship (DOE SCGF). She completed a B.S.
in computer science and a B.A. in mathematics at San José State
University and a B.S. in physics at the California Institute of Technology.

Todd Gamblin is a computer scientist in the Center for Applied Scientific
Computing at Lawrence Livermore National Laboratory. His research
focuses mainly on scalable algorithms for measuring, analyzing, and
visualizing performance data from massively parallel applications. He is
also interested in fault tolerance, resilience, MPI, and parallel program-
ming models. Todd has been at LLNL since 2008.

Todd works closely with researchers in CASC and with staff in the
Development Environment Group in Livermore Computing. He is the
team leader for the Performance Analysis and Visualization at Exascale
(PAVE) project, and he also works on the Exascale Computing Technolo-
gies LDRD project, the SciDAC Sustained Performance, Energy, and
Resilience (SUPER) project, and many other ASC projects at LLNL.

Todd received the Ph.D. and M.S. degrees in Computer Science
from the University of North Carolina at Chapel Hill in 2009 and 2005.
He received his B.A. in Computer Science and Japanese from Williams
College in 2002. He has also worked as a software developer in Tokyo
and held graduate research internships at the University of Tokyo and
IBM Research.

Abhinav Bhatele is a computer scientist in the Center for Applied
Scientific Computing at Lawrence Livermore National Laboratory. His
interests lie in performance optimizations through analysis, visualization
and tuning and developing algorithms for high-end parallel systems.
His thesis was on topology aware task mapping and distributed load
balancing for parallel applications.

Abhinav received a B. Tech. degree in Computer Science and Engi-
neering from I.I.T. Kanpur, India in May 2005 and M.S. and Ph.D. de-
grees in Computer Science from the University of Illinois at Urbana-
Champaign in 2007 and 2010 respectively. Abhinav was an ACM/IEEE-
CS George Michael Memorial HPC Fellow in 2009. He has received
several awards for his dissertation work including the David J. Kuck
Outstanding MS Thesis Award in 2009, a Distinguished Paper Award
at Euro-Par 2009 and the David J. Kuck Outstanding PhD Thesis Award
in 2011. Recently, a paper that he co-authored with LLNL and external
collaborators was selected for a best paper award at IPDPS in 2013.

http://www.tu-dresden.de/zih/vampirtrace

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 13

Martin Schulz is a Computer Scientist at the Center for Applied Sci-
entific Computing (CASC) at Lawrence Livermore National Laboratory
(LLNL). He earned his Doctorate in Computer Science in 2001 from the
Technische Universität München (Munich, Germany) and also holds a
Master of Science in Computer Science from the University of Illinois at
Urbana Champaign. He has published over 175 peer-reviewed papers
and currently serves as the chair of the MPI forum, the standardization
body for the Message Passing Interface. He is the PI for the Office of
Science X-Stack project ”Performance Insights for Programmers and
Exascale Runtimes” (PIPER) as well as for the ASC/CCE project on
Open|SpeedShop, and is involved in the DOE/Office of Science exas-
cale projects CESAR, ExMatEx, and ARGO. Martin’s research interests
include parallel and distributed architectures and applications; perfor-
mance monitoring, modeling and analysis; memory system optimization;
parallel programming paradigms; tool support for parallel programming;
power-aware parallel computing; and fault tolerance at the application
and system level. Martin was a recipient of the IEEE/ACM Gordon Bell
Award in 2006 and an R&D 100 award in 2011.

Bernd Hamann is a professor of computer science at the University of
California, Davis. He studied mathematics and computer science at the
Technical University of Braunschweig, Germany, and received a Ph.D.
in computer science from Arizona State University in 1991. His main
teaching and research interests are data visualization, data analysis and
geometric modeling.

Peer-Timo Bremer is a member of technical staff and project leader
at the Center for Applied Scientific Computing (CASC) at the Lawrence
Livermore National Laboratory (LLNL) and Associated Director for Re-
search at the Center for Extreme Data Management, Analysis, and
Visualization at the University of Utah. His research interests include
large scale data analysis, performance analysis and visualization and he
recently co-organized a Dagstuhl Perspectives workshop on integrating
performance analysis and visualization. Prior to his tenure at CASC,
he was a postdoctoral research associate at the University of Illinois,
Urbana-Champaign. Peer-Timo earned a Ph.D. in Computer science at
the University of California, Davis in 2004 and a Diploma in Mathematics
and Computer Science from the Leibniz University in Hannover, Ger-
many in 2000. He is a member of the IEEE Computer Society and ACM.

	Introduction
	Related Work
	Extracting Logical Structure
	Phase Partitioning
	Local and Global Step Assignment
	Isend Coalescing

	Temporal Metrics
	Evaluation
	MPI Collective Operations
	Massively Parallel Merge Trees
	Algebraic Multigrid

	Conclusion and Future Work
	References
	Biographies
	Katherine E. Isaacs
	Todd Gamblin
	Abhinav Bhatele
	Martin Schulz
	Bernd Hamann
	Peer-Timo Bremer

