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Abstract One of themain restrictions of relational database
models is their lack of support for flexible, imprecise and
vague information in data representation and querying. The
imprecision is pervasive in human language; hence, mod-
eling imprecision is crucial for any system that stores and
processes linguistic data. Fuzzy set theory provides an
effective solution to model the imprecision inherent in the
meaning of words and propositions drawn from natural
language (Zadeh, Inf Control 8(3):338–353, doi:10.1016/
S0019-9958(65)90241-X, 1965; IGI Global, https://books.
google.com/books?id=nt-WBQAAQBAJ, 2013). Several
works in the last 20years have used fuzzy set theory to
extend relational database models to permit representation
and retrieval of imprecise data. However, to our knowledge,
such approaches have not been designed to scale-up to very
large datasets. In this paper, the MapReduce framework is
used to implement flexible fuzzy queries on a large-scale
dataset. We develop MapReduce algorithms to enhance the
standard relational operations with fuzzy conditional predi-
cates expressed in natural language.
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1 Introduction

Themainstream relational databasemanagement systemsuse
a Boolean logic to characterize users’ queries. This means
that the query condition is either satisfied or not satisfied. The
use of Boolean logic poses a restriction in terms of flexibility
and semantics of relational operations and does not allow
expressing preference or ranking of query results. In many
real-world situations, the queries consist of imprecise words
and conditions and the objective is not merely to find the
tuples which satisfy a given query but to determine to what
extent each tuple satisfies the conditions in the query and
to allow ranking of such tuples. For instance, it seems quite
natural for an online real-estate company to answer questions
such as:

Give me all two-bedroom apartments which are not too
expensive and are close to downtown.

While such queriesmight be quite simple for a human real-
estate agent to respond, they are too imprecise for traditional
database systems to process and respond. The imprecision
arises from using linguistic words such as “too expensive”
and “close.”Using boolean logic demands translation of such
words into precise numeric values or intervals which could
potentially result in loss of information. For example, sup-
pose that we rewrite the above query in a form that can be
processed by traditional databases:

“Find all two-bedroom apartments that cost <=$320K and
are located <=10 miles from downtown.”

This query will return an apartment which costs $320K
and is located 10 miles from downtown but fails to return
a $321K apartment that is located 10.5 miles from down-
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Fig. 1 Fuzzy set versus crisp
set for representing the meaning
of “close”

town. While the difference between the two apartments is
negligible, the boolean logic imposes a rigid boundary in the
meaning of the words “expensive” and “close” which results
in returning only the first apartment discarding the second.

Fuzzy set theory and possibility theory (Zadeh 1965,
1999) provide an effective solution to represent and process
imprecise linguistic information. As opposed to classical set
theory, where an element either belongs or does not belong to
a set, in fuzzy set theory an element can partially belong to a
set. The partial membership of elements in a set is character-
ized by a membership function which takes values in the real
unit interval [0,1]. Figure 1 illustrates the difference between
a fuzzy set translation of the word “close to downtown” as
opposed to its crisp (interval) translation. In contrast to the
crisp set , the membership degree of the fuzzy set gradually
decreases after 10 miles. Distance 10.5 miles to downtown
is still considered close to degree 0.95.

Several works have been proposed in the last 20years to
extend relational database models to permit representation
and retrieval of imprecise data using fuzzy set theory. The
existing approaches to fuzzy relational database models can
be divided into three main categories: 1—similarity-based
models, where the ordinary equivalence relation between the
domain values is replaced by similarity or proximity rela-
tions (Shenoi and Melton 1989, 1990; Buckles and Petry
1982); 2—possibility-based models (Prade and Testemale
1984; Bosc and Prade 1997; Medina et al. 1995; Galindo
2005), where an entire tuple is associated with a member-
ship degree and an attribute value is allowed to be a fuzzy set
on the attribute domain; and 3—extended possibility-based
models where the fuzziness of data appears both in attribute
values in the form of a fuzzy set as well as in the attribute
domain in the form of a proximity relation (Ma et al. 2000;
Ma and Mili 2002). For a comprehensive survey on fuzzy
relational database systems, one can refer to Chen (1998),
Petry (1997), Ma and Yan (2010).

The focus of this paper is to develop MapReduce algo-
rithms to scale-up the fuzzy relational operations to large-
scale crisp datasets. We formulate selection, projection,
union, difference, intersection and join operations with fuzzy
conditions.

Several recent papers have extended the classical MapRe-
duce equi-join operation by replacing the rigid equality

condition with a softer similarity relation (Afrati et al. 2012;
Vernica et al. 2010;Metwally andFaloutsos 2012;Das Sarma
et al. 2014;Wang et al. 2013; however, to our knowledge, this
is the first work that utilizes fuzzy set theory to develop scal-
able MapReduce algorithms to perform imprecise linguistic
queries on a large-scale database.

The rest of the article is organized as follows: the next sec-
tion presents an overview of fuzzy relational algebra which
is used to model imprecise queries on crisp datasets. Sec-
tion 3 formulates MapReduce algorithms to scale-up fuzzy
relational operations and analyzes their time efficiencies.
Section 4 provides a discussion on fuzzy join optimization
and load balancing. The algorithms are implemented and
tested against a real-world dataset, and their scalability is dis-
cussed in Sect. 5. Section 6 concludes the paper and presents
future directions of this research.

2 Imprecise queries on crisp datasets

Imprecise queries addressed to a crisp dataset are modeled
by fuzzy relational operations. A fuzzy relational operation
takes a set of crisp relations as input and produces a fuzzy
relation as a result, where each tuple is associated with a
degree to which the fuzzy operation is satisfied.

A fuzzy relation R is characterized by its membership
function μR(t) : D → [0, 1], where t is a tuple in R and
D is its domain. The basic algebra on fuzzy relations is as
follows (Petry 1997):

Cartesian Product The membership degree of a tuple xy
in the Cartesian product R × S is the
minimum of the membership degrees
of tuples x in R and y in S:

μR×S(xy) = min(μR(x), μS(y))

where μR(x) and μS(y) are degrees
of membership of x in R and y in S,
respectively.

Union The membership degree of a tuple x in
R ∪ S is the maximum of its member-
ship degrees in R and S:
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μR∪S(x) = max(μR(x), μS(x))

Intersection The membership degree of a tuple x in
R ∩ S is the minimum of its member-
ship degrees in R and S:

μR∩S(x) = min(μR(x), μS(x))

Difference The membership degree of a tuple x in
R–S is theminimumof itsmembership
in R and S complement:1.

μR−S(x) = min(μR(x), μS(x)) = min(μR(x), 1 − μS(x))

Selection The membership degree of a tuple x in
σφ(R) (where σ is the selection oper-
ation and φ is a fuzzy condition) is
equal to the minimum of its member-
ship degree in R and the degree to
which it satisfies the fuzzy condition
φ:

μσφ(R)(x) = min(μR(x), μφ(x))

Projection The membership degree of a tuple u
in πγ (R)(u) (where π is the projec-
tion operation and γ is a proper subset
of attributes in R) is equal to the max-
imum membership of all tuples in R
whose γ attributes have the same val-
ues as the γ attributes in u:

μπγ (R)(u) = sup
x :x .γ=u.γ

(μR(x))

Join Themembership degree of a tuple xy in
R ��AθB S (where �� is the join opera-
tion and θ is a fuzzy comparator on the
join attributes R.A and S.B) is equal
to the minimum of the membership
degree of x in R, y in S and the degree
to which the join keys satisfy the fuzzy
comparator operator:

μR��AθB S(xy) = min(μR(x), μS(y), μθ (x .A, y.B))

Note that in a crisp dataset all tuples in a relation have
a membership degree equal to one (i.e., μR(x) = 1 for
all x ∈ R). However, once fuzzy operations are applied
fuzzy relations are produced as intermediate or final results

1 If A is a fuzzy set and A is its complement then μA(x) = 1−μA(x).

in which the tuples may have a membership degree less than
or equal to one.

Several fuzzy conditions in a fuzzy relational operation
may be combined using logical AND (∧) and OR(∨) oper-
ators. Suppose φ1 and φ2 are two fuzzy conditions in a
relational operation. We have:

• μφ1∧φ2(x) = min(μφ1(x), μφ2(x)))
• μφ1∨φ2(x) = max(μφ1(x), μφ2(x)))

One can generalize the AND and OR operators by assign-
ing a weight (wi ) to each fuzzy condition (φi ) to express its
importance in a query (Dubois and Prade 1986):

• μ∧

i
wiφi (x) = mini (max(μφi (x), 1 − wi ))

• μ∨

i
wiφi (x) = maxi (min(μφi (x), wi ))

One can also modify a fuzzy condition by applying lin-
guistic modifiers (or hedges), such as “very,” “somewhat,”
“extremely,” “more or less.” A linguistic modifier is modeled
a function m : [0, 1] → [0, 1] that is applied to a fuzzy set
and modifies the membership degrees. The most common
types of linguistic modifiers are concentrator and dilator.
Concentrators, such as: “very” and “extremely” intensify the
membership function of a fuzzy set while dilators such as
“more or less” and “rather” dilute it. Concentrators and dila-
tors are typically modeled as the following function (A is a
fuzzy set):

μmA(x) = (μA(x))n

For example, μvery tall(h) = (μtall(h))2 and μsome what tall

(h) = (μtall(h))1/2

To demonstrate fuzzy relational operations, let us assume
the Faculty relation in Table 1.

Now suppose we want to find all young faculty who make
a somewhat good salary. This query can be formulated as
follows:

μσage=young AND salary=some what good(Faculty)(x)

= min(μFaculty(x), (μgood(salary(x)))
1/2, μyoung(age(x)))

(1)

where μFaculty(x) is the membership of x in the Faculty rela-
tion and it is equal to 1 for all tuples x because Faculty is a
crisp relation.

Suppose that the fuzzy sets representing the imprecise
words “young” and “good” are given as shown in Fig. 2.
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Table 1 Faculty relation

ID Name Age Salary (K)

1234234 Jones 33 70

4324364 Champaign 33 120

4354354 Jameson 41 45

8454857 Nash 50 60

8382347 Jung 29 50

8933897 Li 38 90

4354958 Zhu 40 55

8454875 Edwards 33 65

4854858 Mitchell 38 57

4985948 Kerri 48 100

8435487 Cornell 50 45

The trapezoidal fuzzy sets in this figure can be formulated
as follows:

μgood(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 x ≤ 40

(x − 40)/30 45 < x ≤ 70

1 70 < x < 100

(200 − x)/100 100 ≤ x < 200

0 x ≥ 200

μyoung(x) =

⎧
⎪⎨

⎪⎩

1 x ≤ 35

(55 − x)/20 35 < x ≤ 55

0 x > 55

Given the above fuzzy set representations, Eq. 1 can be used
to compute the degree to which each tuple in Table 1 satisfies
the fuzzy conditions age = young and salary = somewhat
good. For example, the degree to which Nash is considered
young and his salary is somewhat good is equal to 0.25:

μσage = young AND salary = somewhat good(Faculty)(Nash)

= min(1, (μgood(60))
1/2, μyoung(50))

= min(1, 0.81, 0.25)

= 0.25

Similarly, we can compute themembership value towhich
each faculty in Table 1 is young and makes a somewhat good
salary. The result is shown in Table 2.

One can specify a threshold value (i.e., cutoff membership
value) and only return a set of tuples which satisfy the fuzzy
conditions to a degree greater than the threshold.

Consequently, fuzzy set theory allows us to effectively
model the meaning of imprecise words in a query and pro-
vides a calculus to compute and rank the results based on
the degree to which they satisfy the fuzzy conditions in the
query.

Fig. 2 Fuzzy sets representing the words “young” and “good.” The
domain of “age” is assumed to be [0, 120], and the domain of “salary”
is assumed to be: [0, 300K]

Table 2 Faculty relation

ID Name Age Salary (K) μyoung & somewhat
good salary

1234234 Jones 33 70 1

4324364 Champaign 33 120 0.64

4354354 Jameson 41 45 0.02

8454857 Nash 50 60 0.25

8382347 Jung 29 50 0.11

8933897 Li 38 90 0.72

4354958 Zhu 40 55 0.25

8454875 Edwards 33 65 0.7

4854858 Mitchell 38 57 0.32

4985948 Kerri 48 100 0.35

8435487 Cornell 50 45 0.02

3 Scaling flexible queries with MapReduce

3.1 MapReduce framework

MapReduce (Dean and Ghemawat 2008) is one of the most
common platforms for processing big data. Many standard
algorithms have been extended to comply with the shared-
nothing architecture of MapReduce. MapReduce model
of computation consists of two main functions: Map and
Reduce. A large input file is broken into chunks and stored in
a distributed file system. During the execution of a MapRe-
duce job, the mapper tasks read an input split and call the
Map function on each single record in the input split to pro-
duce a set of intermediate key-value pairs. The intermediate
key-value pairs are hashed to one or more reducers based
on their keys. The key-value pairs sent to each reducer are
sorted and grouped by their keys. A reduce function is called
for every key and all its associated values to produce a chunk
of final output.

The cost of a MapReduce job is expressed in terms of
(M +C + R) where M is the map cost across all records, C
is the communication cost of passing intermediate key-value
pairs to the reducers and R the total computation cost of all
reducers.
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3.2 Fuzzy relational operations in MapReduce

This section describesMapReduce algorithms for fuzzy rela-
tional operations on a large crisp dataset. The selection,
union, intersection, and difference operations do not require
much modifications to the crisp counterparts. The join oper-
ation is more complex as it requires computing the fuzzy
comparator operator for all pairs of records in R and S.

3.2.1 Fuzzy selection

The selection operator is a map-only job that reads a record
r from relation R, computes the degree (μ) to which r sat-
isfies a given fuzzy condition and emits r and μ as key and
value, respectively. A dictionary file which maps the linguis-
tic words in the query to their fuzzy set representations is
stored in the memory of the nodes running the mappers.

Algorithm 1 Fuzzy selection map-only job
1: Map:
Input: r : an input record, μR(r): membership of r in R, φ:fuzzy con-

dition
2: Parse φ and retrieve the fuzzy sets corresponding to the linguistic

words in φ

3: compute μφ(r)
4: d = min(μR(r), μφ(r))
5: emit key=r, value=d

The cost of the selection operation is the cost of the Map
function across all records, O(|R|), where |R| is the number
of records in R.

3.2.2 Fuzzy union, intersection and difference

TheMap function for fuzzy union R∪S reads an input record
r ( from R or S) and emits r and its membership degree
(in R or S). The reduce function computes the maximum
membership degree for each input record it receives as a key.

Algorithm 2 MapReduce job for Fuzzy union R ∪ S
1: Map:
Input: r : an input record, μ(r): membership of r
2: emit key=r, value = μ(r)

1: Reduce:
Input: r : an input record, value= listi < μi (r) >

2: emit key=r, value = max(listi < μi (r) >)

The Map function for fuzzy intersection R ∩ S is the
same as fuzzy union. The reduce function emits the mini-
mum membership degree for each record only if both R and
S have the record.

Algorithm 3MapReduce job for Fuzzy intersection R ∩ S
1: Map:
Input: r : an input record, μ(r): membership of r
2: emit key=r, value = μ(r)

1: Reduce:
Input: r : an input record, value= listi < μi (r) >

2: if value has at least two membership degrees then
3: emit key=r, value = mini (listi < μi (r) >)

4: end if

TheMap function for fuzzy difference R–S reads an input
record r and emits r as the key. For value, it emits the name of
the relation (R or S) to which r belongs as well as its mem-
bership degree. The reduce function receives a record r as the
key and a list of its associated relations and degrees of mem-
bership in each relation. If r belongs to R but not S, it will
emit r and its membership degree in R. If r belongs to both
R and S it will emit r and the minimum of its membership
degrees in R and S complement.

Algorithm 4MapReduce job for Fuzzy difference R − S
1: Map:
Input: r : an input record, N name of the relation to which r belongs

(R or S), μN (r): membership of r in N
2: emit key=r, value = (μN (r), N )

1: Reduce:
Input: r : an input record, value= listN < (μN (r), N ) >

2: if value== {(μR(r), R)} then
3: emit key=r, value = μR(r)
4: end if
5: if value== {(μR(r), R), (μS(r), S)} then
6: emit key=r, value = min(μR(r), 1 − μS(r))
7: end if

In all the above three algorithms, the mappers read |R| +
|S| input records and emit each record in the output. Each
reducer performs a linear operation on the values it receives.
Hence, the total cost for fuzzy union, intersection and differ-
ence is:

M + C + R = O(|R| + |S|) + O(|R| + |S|)
+ O(|R| + |S|)

3.2.3 Fuzzy projection

The Map function for fuzzy projection πγ (R) reads each
input record r in R and emits the gamma attributes of r ,
r.γ , as key and the membership degree of r in R as value.
A reducer receives a key r.γ , produced by any of the map
tasks, and a set of membership degrees associated with it. It
emits r.γ and the maximum of its membership degrees.

To illustrate the mapreduce algorithm for fuzzy projection
suppose that we would like to return the age for young fac-
ulties who make a somewhat good salary from Table 1. The
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Fig. 3 The Map function returns the age and the membership value for each record. The reduce function returns the maximum membership value
for each age

Algorithm 5 MapReduce job for Fuzzy projection πγ (r)
1: Map:
Input: r : an input record, γ : projection attributes μR(r): membership

of r in R
2: emit key=r.γ , value = μR(r)

1: Reduce:
Input: u:projected attributes of an input record, value= listi :ri .γ=u <

(μR(ri ) >

2: emit key=u, value = maxi :ri .γ=u(μR(ri ))

selection operation is applied first to return the membership
values in Table 2. Then the projection is applied to return the
age and membership values from this table. The MapReduce
data flow for projection is illustrated in Fig. 3

The cost of fuzzy projection is:

M + C + R = |R| + |πγ (R)| + |πγ (R)|

where |πγ (R)| is the size of relation R after eliminating the
attributes not included in γ .

3.2.4 Fuzzy join

The fuzzy R−S join operation takes a fuzzy comparator
(such as fuzzy equal, fuzzy greater than and fuzzy less than)
and computes the degree to which every pair (r ∈ R, s ∈ S)

satisfies the join condition. The pairwise computation has
a quadratic running time and does not fit well within the
MapReduce framework. Hence, a heuristic partitioning and
filtering is applied to avoid unnecessary computations. We
demonstrate the fuzzy join algorithm via a small example.

Consider a dataset for online retail sales which includes
two files that, among other attributes, have columns for cus-
tomer name, age of customer, and product purchased (Table
3).

Table 3 Store X and store Y
datasets

Name Age Product

Store X

Person A 32 PA

Person B 35 PB

Person C 33 PC

Person D 38 Pd

Store Y

Person E 36 PE

Person F 35 PF

Person G 32 PG

Person H 30 PH

Suppose we are interested to find all pairs of products
from both stores that people of approximately the same age
purchased.More formally, for every pair of records x in Store
X and y in Store Y we would like to find the membership
degree to which x . Age is fuzzy equal (FEQ) to y.Age:

μStoreX��(x.Age FEQ y.Age)StoreY(xy)

= min(μStoreX(x), μStoreY(y), μFEQ(x .Age, y.Age)) (2)

StoreX and StoreY are both crisp relations and so μStoreX(x)
and μStoreY(y) are both equal to 1; hence,

μStoreX��(x.Age FEQ y.Age)StoreY(xy) = μFEQ(x .Age, y.Age)

(3)

Typically, we are interested to return only the pairs whose
degree ofmembership in the join is above a certain threshold.
For example, we would like to consider only the customers
whose ages are fuzzy equal to at least 75% degree. To begin,
we need a fuzzymembership function for the fuzzy compara-
tor, fuzzy equals, to determine the degree to which two age
values are approximately equal. Suppose we have a trapezoid
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Fig. 4 membership function
for the fuzzy comparator
“approximately equal” for
attribute age. The x-axis shows
the absolute difference between
two age values x .Age and
y.Age, and the y-axis is the
degree to which
|x .Age − y.Age| is considered
fuzzy equal

membership function as displayed inFig. 4.Thismembership
function is defined on the absolute distance between two age
values (i.e., |x .Age− y.Age|) and takes the following form:

μFEQ((x .Age, y.Age))

=

⎧
⎪⎨

⎪⎩

1 0 <= |x .Age − y.Age| <= 2

(6 − |x .Age − y.Age|)/4 2 < |x .Age − y.Age| <= 6

0 6 < |x .Age − y.Age|

Since we are only interested in getting all pairs of age val-
ues which are fuzzy equal to a degree greater than 0.75, we
can take theα-cut (Buckley andEslami 2002) of themember-
ship function at point 0.75. The α-cut of a fuzzy set at point
α ∈ [0, 1] is the set of domain elements whose membership
degrees are greater than or equal to α (Klir et al. 1997). The
α-cut of fuzzy equal as defined above is the interval [0, 3] as
depicted in Fig. 4. This means that if |x .Age− y.Age| <= 3
then x .Age and y.Age are considered fuzzy equal to a degree
of at least 0.75 or 75%.

The overall idea of scalable fuzzy equal join algorithm is
to take the domain of the join attribute (in this case age) and
partition it into equal-sized intervals with a length equal to
the α-cut of the fuzzy comparator at the threshold value. The
mappers send each input record to its home partition (i.e., the
interval it falls into) as well as the partition to its immediate
right.

For example, let us assume that the domain of the Age
attribute in Table 3 is the interval [18,75]. The length of
the α-cut of the fuzzy comparator “fuzzy equal” at thresh-
old 0.75 is 3. Hence, the interval [18,75] is partitioned into
19 sub-intervals of size 3, that is: p0 = [18, 21], p1 =
(21, 24], . . . , p17 = (69, 72], p18 = (72, 75].

Each mapper receives an input record as well as the name
of the relation that contains the record and sends the record

to its home partition,ph , and its immediate right partition,
ph+1. The mapper also emits a flag with each record that
distinguishes between the home and its immediate right par-
tition and signifies if the record falls within the first half or
the second half of the range of its home partition.

For instance, a mapper receives the input record (Person
A, 32, PA) from Store X in Table 3 and computes the index
of its home partition as ph = � 32−18

3  = 4. The mapper then
emits the following two key-value pairs:

map((store X,Person A, 32,PA) →
{(key = p4, value = [(Store X, 32,PA),HS]),
(key = p5, value = [(Store X, 32,PA),Ns])}

where HS indicates that p4 is the home partition for this
record and the record lies within the second half of its home
partition, while NS indicates that p5 is the partition to the
immediate right of the home partition and the record lies
within the second half of its home partition.

Similarly, for each record in store X and store Y two
key-value pairs are produced containing the index of the
home partition and its immediate right neighbor as their keys,
respectively. The intermediate key-value pairs emitted by
mappers are grouped by the partition number and sent to
their corresponding partition (i.e., reducer).

Each reducer receives a partition number as a key and
all the records sent to that partition as values. Based on their
flags, it divides the records into four groups as shown in Fig. 5

• Home First (HF) The set of all records flagged as home
and fall within the first half of the home partition.

• Home Second (HS)The set of all records flagged as home
and fall within the second half of the home partition.
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Fig. 5 Every reducer receives all records that fall within a partition and its left neighbor and divides the records into four groups: HF, HS, NF, NS.
The lengths of the home partition and its left neighbor are equal to the length of α-cut of the fuzzy equal

• Neighbor First (NF) The set of all records flagged as
neighbor and fall within the first half of the left neighbor.

• Neighbor Second (NS) The set of all records flagged as
neighbor and fall within the second half of the left neigh-
bor.

The reducer then combines the following records for each
partition to produce the join result:

• All records from store X in (HF∪HS)must be combined
with all records from store Y that fall within the same.
This is because every two records that fall within the
home partition have a distance less than the length of the
α-cut.

• All records from store X (store Y ) in HF must be com-
bined with all records from store Y (store X ) in NS.

• All records from store X (store Y ) in HF must be com-
bined with all records from store Y (store X ) in NF if and
only if their distance is less than the length of α-cut.

• All records from store X (store Y ) in HS must be com-
bined with all records from store Y (store X ) in NS if and
only if their distance is less than the length of α-cut.

The reducer also computes the degree to which the combined
records satisfy the fuzzy equal condition based on Eq. 3.

Figure 6 illustrates the MapReduce data flow for fuzzy
equal join on the two datasets in Table 3. The join is per-
formed on the age column, and the reducers’ outputs show all
pairs of products that are purchased by people of an approx-
imately same age (to degree ≥0.75). For each record it also
shows the degree to which the joint result satisfies the fuzzy
equal condition.

The MapReduce job for fuzzy equal join is summarized
in algorithm 6. The Map function receives a single record r
from relation R or S and, in line 3, it computes the home
partition of r based on the length of the α-cut of fuzzy equal
(L) and the lower bound on the domain of the join attribute
(A.min). If r lies within the first half of its home partition,
the Map function sends the record to its home partition and
tags the record as HF (line 5). It also sends the record to
the partition to the immediate right of the home partition
and marks it as “NF” (line 6). Otherwise, if r lies within the
second half of its home partition, it is marked as HS and sent
to its home partition (line 8). It is also marked as NS and sent
to the partition to the immediate right of the home partition

(line 9). Therefore, each input record in R and S is sent to
exactly two reducers.

Each reducer receives a set of records that are sent to par-
tition for that reducer. Each record comes with the name of
the relation it belongs to (R or S) as well as a flag which indi-
cates if this reducer is the home or neighbor partition for this
record and which half of the home partition the record falls
into. It then runs a nested loop which combines all records
from R with all the records from S which are tagged as HF
or HS. In addition, it combines all R records tagged as HF
with all S records tagged as NS (lines 5–7). Similarly, all R
records tagged as HF are combined with all S records tagged
as NF and all R records tagged as HS are combined with all
S records tagged as NS if and only if their membership in
fuzzy equal is at least α (lines 8–11). The membership of the
joint tuple is equal to the minimum of the memberships of
each tuple in its own relation as well as the degree to which
the joint tuple satisfies the fuzzy equal condition (lines 6 and
10).

Lemma 1 suppose that a pair of records r ∈ R and s ∈
S are fuzzy equal to a degree greater than or equal to a
threshold α. Using algorithm 6, r and s are sent to at least
one common reducer and the pair (r, s) is produced exactly
once in the output.

Proof Suppose L is the length of α-cut of fuzzy equal then
s must be within the interval [r − L , r + L]. suppose ph is
the home partition for r . Hence, r is sent to reducers rh (its
home reducer) and rh+1 (the reducer to the immediate right
of the home reducer). There are three possible cases:

1 The home partition of s is also ph . In this case, s and r
are both sent to rh and rh+1, but they are only combined
in their home reducer and hence, (r, s) is produced only
once in the output.

2 The home partition of s is ph−1. In this case, s is sent to
rh−1 and rh . Hence, r and s go to exactly one common
reducer, rh , and the pair (r, s) is produced only once in
the output.

3 The home partition of s is ph+1. In this case, s is sent to
rh+1 and rh+2. Hence, r and s go to exactly one common
reducer, rh+1, and the pair (r, s) is produced only once
in the output. ��
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Fig. 6 MapReduce data flow for fuzzy equal join to return all pairs
of products, from datasets X and Y, which were purchased by people
of approximately the same age. The first and second columns in the
input are “age” and “product_id,” respectively. The last column in the

output is the degree to which the joint record satisfy the fuzzy equal
condition. For example, product PC from store X and PH from store Y
are purchased by people approximately the same age to 0.75◦

TheMap and communication cost for algorithm 6 are both
M = C = 2(|R|+ |S|) as each input record in R or S is sent
to exactly two reducers. The reducer performs a cross prod-
uct only on a subset of the values it receives. If we assume
that the input data are distributed uniformly, every reducer
on average receives about 2(|R|+|S|)

n , where n is the num-
ber of partitions (i.e., the number of reducers). The reducer
then performs a quadratic operation on four subpartitions:
{HF, HS}, {HF, NS}, {HF, NF} and {HS, NS}. Hence
the total cost of all reducers is:

r = n × O

(

4 ×
(
2(|R| + |S|)

4n

)2
)

= O

(
(|R| + |S|)2

n

)

Hence, the total cost of algorithm 6 is:

M + C + R = O((|R| + |S|)) + O((|R| + |S|))
+ O

(
(|R| + |S|)2

n

)

In general case, however, the join key may not be partitioned
uniformly across the reducers. In the worst case scenario,
where all pairwise combination of R and S tuples satisfies

the fuzzy joint condition, all tuples end up landing at the
same partition and hence the worst cost will be (|R| + |S|)2
as if the entire join is running on one partition. To alleviate
this situation, when the dataset is skewed, the data must be
repartitioned to balance the load among reducers. This will
be discussed in the following section.

4 Join optimization and load balancing

A main drawback of most reduce-side join algorithms is
their lower performance when the skewness is present in
the dataset. The fuzzy equal join algorithm in the previ-
ous section divides the domain of the join attribute into a
number of equal ranges. Each range is called a partition and
records from each relation get assigned to these partitions
based on which range their join attribute value falls into. If
the join attributes are distributed uniformly, then it is reason-
able to assume roughly the same number of records would
be assigned to each partition, with each reducer handling
an equal load. If the dataset is small, then one could also
assume that each reducer could handle the data sent to it in
short order. Unfortunately, all too often neither are the case
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Algorithm 6 MapReduce job for Fuzzy equal join R �� S
1: Map:
Input: r : an input record, K name of the relation to which r belongs (R

or S), μK (r): membership of r in K , α: threshold value, L: length
of α-cut of fuzzy equal, A: the join attribute, A.min: a predefined
lower bound on the values of A

2: if μK (r) >= α then
3: ph = � r.A−A.min

L  {Compute the home partition}
4: if (r.A − r.min) mod L < L/2 then
5: emit key=ph , value= <K,r,HF>

6: emit key=ph+1, value= <K,r,NF>

7: else
8: emit key=ph , value= <K,r,HS>

9: emit key=ph+1, value= <K,r,NS>

10: end if
11: end if

1: Reduce:
value
Input: = list < (K , r, f lag) >

2: for v1: value do
3: for v2: value do
4: if (v1.K= R and v2.K=S) then
5: if (v1.flag=(HF | HS) and v2.flag=(HF | HS)) or

(v1.flag=HF and v2.flag=NS) then
6: emit key=(v1.r, v2.r)

value=min(μv1.K (v1.r), μv2.K (v2.r), μFEQ(v1.r, v2.r))
7: end if
8: if (v1.flag=HF and v2.flag=NF) OR

(v1.flag=HS and v2.flag=NS) then
9: if (μ(FEQ(v1.r, v2.r)) >= α) then
10: emit key=(v1.r, v2.r)

value=min(μv1.K (v1.r), μv2.K (v2.r), μFEQ(v1.r, v2.r))
11: end if
12: end if
13: end if
14: end for
15: end for

and some subpartitioning of the data is needed to ensure load
balancing.

There are quite a few studies which have addressed the
problem of load balancing in the presence of data skew. Some
studies, such as (Kwon et al. 2012; Elmeleegy et al. 2014;
Gufler et al. 2012; Ramakrishnan et al. 2012) extended the
MapReduce framework to mitigate the skewness problem.
Other papers (Atta et al. 2011; Zhang et al. 2012; Kyritsis
et al. 2012; Hassan et al. 2014) modified the join algorithm to
enforce load balancing. For the fuzzy equal join algorithm,
we use the partitioning approach proposed in Zhang et al.
(2012) to balance reducers’ loads when data are skewed.

We assume a threshold value for the maximum number of
records that a reducer can handle before being overloaded.
Such threshold is determined based on the hardware prop-
erties of each reduce slot. The reducers that are expected to
receive more records than the threshold value are reparti-
tioned in such a way that all potentially similar values are
able to be compared, but the load of an overloaded reducer
is divided into a number of subpartitions. The more records

Fig. 7 Subpartitioning of an overloaded reducer, every record r ∈ R is
hashed to a row of subpartition matrix and every record s ∈ S is hashed
to a column of subpartition matrix. The pair (r, s) meet in exactly one
subpartition

being sent to an overloaded reducer, the greater the number
of subpartitions. The number of output records produced by
an overloaded reducer is distributed into a matrix of d × d
subpartitions such that the expected number of input records
to each subpartition will be less than the threshold.

Suppose that an overloaded reducer receives |r | and |s|
records from relations R and S, respectively. The maximum
number of output records that can be produced by this reducer
is |r | × |s|. So, each subpartition is expected to produce at
least |r |×|s|

d×d records. To produce such output, each subparti-

tion should at least receive 2 ∗
√|r |×|s|

d input records (Zhang
et al. 2012).Wewant the number of input records to each sub-

partition to be less than a threshold; that is, 2∗
√|r |×|s|

d <= t ,
where t is the threshold value. Consequently, to distribute the
output of an overloaded reducer to d × d subpartitions such
that each partition receives less than t records, d must be at

least equal to 2 ∗
√|r |×|s|

t .
A hash function is used to determine which subpartition

every record is sent to in an overloaded reducer. If a record
belongs to relation R in a RS join, then it is hashed to a
row of the subpartition matrix, but if it belongs to relation
S, it is hashed to a column of the subpartition matrix. This
is illustrated in Fig. 7. This method guarantees that every
pair of records from r ∈ R and s ∈ S will end up going
to exactly one common subpartition and hence are joined in
that subpartition (Fig. 7).

For example, suppose that in fuzzy equal join of Fig. 6 the
reducer threshold is four records so the second and third parti-
tions are overloaded and need to be repartitioned. The second
partition has three records from relation x and three records
from relation y; hence, this partition will be subpartitioned

into d×d matrix of subpartitions where d = �2∗
√
3×3
4 � = 2
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. The third partition contains three records from relation
x and two records from relation y; hence, this partition
will be divided into d × d matrix of subpartitions where

d = �2 ∗
√
3×2
4 � = 2 .

If h is a hash function, suppose that h(30) mod 2 = 0,
h(32) mod 2 = 0, h(33) mod 2 = 1, h(35) mod 2 = 1,
h(36) mod 2 = 0 and h(38) mod 2 = 0. Then records in
the second and third partitions are repartitioned as shown in
Fig. 8.

Each record in relation x is sent to a row of the subpartition
matrix, while each record in relation y is sent to a column
of the subpartition matrix. For example, record (5, x ,<32,
PA>, N, S) is sent to the two subpartitions in row 0, while
record (5,Y ,<35, PF>, H, S) is sent to the two subpartitions
in column 1. The records in each subpartition are then joined
in a similar way to the non-overloaded partitions as explained
in the previous section.

To implement the repartitioning in MapReduce, a simple
MapReduce job is run to preprocess the input and count the
number of R and S records being sent to each reducer in
order to find the overloaded reducers. This is described in
algorithm 7. The output of the preprocessing job is copied
into the distributed cache for fast retrieval in the subsequent
job.

Algorithm 7 preprocessing job: Finding the overloaded
reducers

Map:
Input: r : an input record, K the name of the relation towhich r belongs,

muK (r): membership of r in its relation, L: length of α-cut of fuzzy
equal, A: the join attribute, A.min: a predefined lower bound on the
values of A

2: if μ(r) >= α then
ph = � r.A−A.min

L  {Compute the home partition}
4: emit key=ph , value=K

emit key=ph+1, value=K
6: end if

Reduce:
Input: key =p:a partition number value= list < K >

2: num_R_records = count (K ∈ value : K = R)

num_S_records = count (K ∈ value : K = S)

4: if (num_R_records+num_S_records)>=threshold then
emit key= p , value= (num_R_records, num_S_records)

6: end if

The Map function in the fuzzy equal join algorithm is
modified as shown in algorithm 8 to subpartition the over-
loaded reducers. Lines 1–12 in this algorithm are the same
as algorithm 6. Line 13 loads the set of overloaded partitions
obtained from the preprocessing job. If the home partition
or its immediate right neighbor belong to the overloaded
set, they are repartitioned. The dimension of the subparti-
tion matrix is computed based on the number of records sent
to each partition and the threshold value (lines 15 and 28).

Tecord r is then hashed and sent to a row of the subpartition
matrix if it belongs to relation R; otherwise, it is sent to a
column of the subpartition matrix (lines 16–22 and 29–36).

Algorithm 8 MapReduce job for Fuzzy equal join R �� S
with load balancing
1: Map:
Input: r : an input record, K name of the relation to which r belongs

(R or S), μK (r): membership of r in K , α: threshold membership
value, L: length of α-cut of fuzzy equal, A: the join attribute, A.min:
a predefined lower bound on the values of A, t :reducer threshold

2: if μK (r) <= α then
3: return
4: end if
5: ph = � r.A−A.min

L  {Compute the home partition}
6: if (r.A − r.min) mod L < L/2 then
7: value1= <K,r,HF>

8: value2= <K,r,NF>

9: else
10: value1= <K,r,HS>

11: value2= <K,r,NS>

12: end if
13: O= retrieve, from distributed cache, the set of overloaded partitions

produced as the result of the preprocessing job
14: if ph ∈ O {The home partition is overloaded and requires reparti-

tioning} then

15: d= 2 ×
√
ph .num_R_records×ph .num_S_records

t
16: i = hash(r) mod d
17: for j=0...d do
18: if r ∈ R then
19: emit key= Phi j value= value1
20: else
21: emit key= Ph ji value= value1
22: end if
23: end for
24: else
25: emit key=ph value=value1 {The home partition is not over-

loaded}
26: end if
27: if ph+1 ∈ O {The right neighbor is overloaded and requires repar-

titioning.} then

28: d= 2 ×
√
ph+1.num_R_records×ph+1.num_S_records

t
29: i = hash(r) mod d
30: for j=0...d do
31: if r ∈ R then
32: emit key= Ph+1i j value= value2
33: else
34: emit key= Ph+1 j i value= value2
35: end if
36: end for
37: else
38: emit key=ph+1 value=value2 {The right neighbor is not over-

loaded}
39: end if

5 Experimental results

To show the scalability of the MapReduce algorithms pro-
posed in this paper for fuzzy relational operations, we used
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Fig. 8 MapReduce data flow of fuzzy equal join after repartitioning. The threshold is four records, the second and third partitions are repartitioned
into four subpartitions

the flight dataset made available by the US department of
transportation US (2016). The dataset contains flight infor-
mation for nonstop domestic flights by major air carriers and
includes items such as departure and arrival delays, origin
and destination airports, flight numbers, nonstop distance.
The dataset contains 164,219,718 records ranging from year
1987 to 2015.

The MapReduce algorithms for fuzzy selection, projec-
tion, union, intersection, and difference are all clearly linear
as explained in Sect. 3.2; hence, this section is only dedicated
to show the scalability of the fuzzy equal join algorithm. The
join query that was posed to the dataset was “find all pairs of
flights with an approximately equal flight distances.” More
formally,

μflight��AEDflight(xy) = min(μflight(x), μflight(y),

μAE(x .distanc, y.distance))

where AE represents approximately equal and AED repre-
sents approximately equal distances and a fuzzy trapezoid
membership is used to represent the linguistic term “approx-
imately equal” for flight distance and the membership
threshold is set to 0.9 to return all pairs of flights with dis-
tances of at least 90% approximately equal.

The fuzzy join algorithms with and without load bal-
ancing were run on varying data sizes on Amazon Elas-
tic MapReduce, and the running time was measured for
each data size. A total of 28 cores with 210 GB mem-
ory and 5 Terabyte SSD are used to run the experi-
ment.

The query running time for each data size with and
without load balancing is shown in Figs. 9 and 10, respec-
tively. As illustrated in these figures, the running time of
both fuzzy equal join algorithms grows linearly with the
number of output records.2 Both algorithm produced the
same result; however, the running time of the fuzzy equal
join algorithm with load balancing is slightly longer than
the running time of the algorithm without load balanc-
ing, but this is to be expected as increasing the number
of reducers in the algorithm with load balancing imposes
some overhead. The fuzzy equal join algorithm without
load balancing fails after 2 billion output records due to
straggling reducer, while the algorithm with load balanc-
ing continues to grow linearly with the number of output
records.

2 As proven in Sect. 3.2.4 each output records is generated only once;
therefore, it seems reasonable to measure the growth in terms of the
number of output records.
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Fig. 9 The running time of the fuzzy equal join algorithm without load balancing for varying data sizes. The fuzzy equal join algorithm without
load balancing fails after approximately 2 billion output records due to a skewed reducer running out of memory

Fig. 10 The running time of the fuzzy equal join algorithm with load balancing for varying data sizes. The running time grows linearly in terms
of the number of output records
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6 Summary and future work

This paper reports the implementation of a scalable flexible
relational algebra in MapReduce based on fuzzy set theory.
The work provides a hybrid methodology which integrates
fuzzy operations and big data. The algorithms proposed in the
paper allow users to pose linguistic queries to a large-scale
crisp dataset. The fuzzy operations discussed are fuzzy selec-
tion, fuzzy projection, fuzzy union, fuzzy intersection, fuzzy
difference and fuzzy equal join. The cost of each algorithm
is discussed in terms of the cost of the map and reduce func-
tions as well as the communication cost. For future direction
of this work, we will focus on two possible extensions of the
current scalable fuzzy relational algebra:

1 The fuzzy join algorithm presented in this paper can only
be applied when the join condition is fuzzy equal. An
extension of the current framework will be considered
when the join condition includes fuzzy greater than or
fuzzy less than comparators.

2 The relational algebra presented in this work assumes
that the linguistic queries are applied to a fuzzy rela-
tion where the attribute values are crisp but an entire
tuple in the relation is associated with a membership
degree. A more general framework can be developed
where attribute values are also allowed to be linguistic or
fuzzy. For example, the attribute “price” in a “product”
relation can take linguistic values such as “expensive,”
“cheap,” “pricey,” “average” or any arbitrary fuzzy set
on the price domain. Developing a scalable fuzzy join
algorithm for such framework will be particularly chal-
lenging as the join will require partitioning the space of
fuzzy sets on a given domain. The application of such
framework will be in running linguistic queries against
datasets gathered from weblogs, news or social media
where data are mostly linguistic rather than numeric. In
this case, the join is not merely performed by simple text
similarity, but rather by the meaning of the linguistic val-
ues modeled by fuzzy sets.
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