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ABSTRACT

Computer simulations of the effect of earthquakes on built structures
promise to let engineers understand different tradeoffs and designs
at an attractively low cost. In this scenario, the bottleneck for the
expert is one of data understanding: how do different building de-
signs respond to different earthquakes? What do the building failure
modes have in common, and how does this compare to theoretical
predictions? The way in which a building responds to an earthquake
is complex and controlled by different factors. In this poster, we
present ongoing work in building a system for interactive visual-
ization of earthquake simulation data, in collaboration with civil
engineers who have run thousands of simulations, varying the height
of the simulated buildings, ground acceleration, and building struc-
ture design. We describe the challenges in the visualization of such
multivariate time series data, and some of our proposed solutions.
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1 INTRODUCTION

Through computational simulation, civil engineers can understand
how buildings respond to external forces much more efficiently than
previously possible. The simplicity with which different scenarios
can be simulated and analyzed is attractive, but it is ultimately the
source of a new problem: the understanding of the phenomenon is
now dependent on the ability to quickly make sense of large amounts
of data.

In this poster, we will report on an ongoing collaboration with
civil engineers who run a large number of simulations of building
responses, and how data analysis and information visualization can
highlight interesting patterns in the data. This problem is especially
challenging because of the variety of scales involved. There are
multiple earthquakes to be compared to each other; each building’s
response to an earthquake naturally varies across simulation time,
and has different values along different points of the building. There
are also periodic phenomena in each simulation, occurring at poten-
tially different periods. Finally, there are multiple physical variables
of interest, including shear, moment, and diaphragm forces.

Some of the visualization techniques we using include matrix
diagrams and multivariate time series visualizations, as can be seen
in Figure 1. We combine those techniques with classical techniques
from signal processing for segmentation, and recent techniques in
machine learning for determining similarities between segments of
each earthquake simulation.

2 RELATED WORK

Although the problem of understanding how a building behaves dur-
ing an earthquake has long been studied. In order to investigate the
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performance of a building on a shake table, in 2007, engineers built
a seven-story building for testing and re-creation of a seismic re-
sponse of it based on recorded data of a full scale shake table test [3].
Here, we are concerned about the relationship between the different
physical measurements, as well as with the understanding of how
these patterns are similar or different across different earthquakes.

At the same time, visual exploration of multivariate data sets is
an integral part of scientific visualization. As in most real world
phenomena, there exist multiple factors associated with the complex
interactions of different variables. To gain an in-depth understanding
of a scientific process, the relationship among the variables needs to
be thoroughly investigated. Biswas et al. [1] propose a framework to
classify isocontours of variables based on the relationship between
them and users can explore the multivariate data sets using their
interface. Comparing time series data is another great challenge.
Kernel methods, such as Support Vector Machines and Gaussian
Processes have become classical data-analysis tools. Vert et al.
propose an alignment kernel for time series which is widely used
when comparing time series [4].

3 ONGOING WORK

Our ultimate goal is to build infrastructure to enable civil engineers to
visually compare these multi-variate temporal data. In collaboration
with the domain experts, we arrived at the following visualization
tasks:

T1 Summarize all the earthquakes simulations to help engineers
make scientific and quantitative comparisons between them;

T2 For a specific earthquake simulation, explore the multivariate
data and spot interesting patterns;

T3 When an interesting event is identified, obtain similar events
on other simulations, so the context in which these events
happened can be compared.

Towards this end, we built a prototype interface using 50 of the
available earthquake simulations. The simulations track 6 physical
attributes of interest, for each floor: acceleration, shear, diaphragm
force, moment, drift ratio, and interstory drift ratio. For example,
shear measures the stress parallel to each floor, while interstory
drift ratio measures the positional difference between two adjacent
floors at a given point in time. This gives a vector-valued time series
for each attribute, and each simulation has 25,000 time steps in
average. Each attribute is normalized by dividing the raw value by a
predetermined design limit. This has the benefit that any value of
the time series above 1 or below negative 1 indicate that the building
is operating out of its safe design specifications, and mitigates the
issue of comparing variables of different units.

Implementation details The current prototype is implemented
in Javascript using D3 [2], and employs both SVG and HTML5
Canvas for performance. The earthquake simulations are run on
a cluster, and the output is preprocessed using Python and SciPy
before they are consumed in our D3 application.

NLP Model and Probability Product Kernel for cross-
earthquake comparisons A view (left part of Fig. 1) organizes
the entire dataset more abstractly. For example, suppose we want
to compare the shear value across different earthquakes. Based on
the fact and observation that simulation data has periodic features,



Figure 1: Some of the multiple views supporting comparative visualization of earthquake simulations. The response of a building for the entirety
of the simulation can be compared to one another, and some earthquakes have more similar responses to others. This gives a comparative
overview of all simulations in (A), where a matrix diagram view shows the overall similarities of floor shear across 50 earthquake simulations.
In addition, building responses tend to be vibrational and periodic in nature, so segments of an earthquake simulation are compared to one
another in (B), where a matrix diagram view demonstrates the similarities between different segments of two earthquake simulations (eq1 and
eq21 in view (A)). Analysts can select a portion of the ground acceleration (C) and drill down into a specific earthquake simulation (D), to
visualize the response of a single physical variable plotted over time (x coordinate) and building floor (y coordinate). Finally, a 2D histogram
can be used to compare two different attributes over the same period of time: how does shear (x coordinate) compare to moment (y coordinate)?

Figure 2: An overview of the data collected by the civil engineers
during the simulation. The main challenge in this project is to
design visualizations which highlight interesting patterns across the
different dimensions, attributes, and scales.

we use a bag-of-words analogy inspired from Natural Language
Processing (NLP). We split each earthquake simulation into a set
of segments with a fixed period (P), producing segments that are
represented as 13×P matrices. After applying the segmentation,
each earthquake simulation becomes a set of matrices (the “words”
in the bag of words, which we call “motifs”). For any two motifs
coming from two earthquakes (of possibly different periods), we
compare them directly as continuous time series, by upsampling
the shorter motif to the length of the longer. After representing
simulations as motifs, we calculate the similarity between any two
earthquake simulations by mapping the set of motifs to a Gaussian
distribution in Hilbert space, and use Bhattacharyya’s similarity to
compare the earthquakes [5].

Matrix diagram views We use matrix diagrams to visualize
both the behavior across earthquakes, and within an earthquake, and
use D3’s existing matrix diagram infrastructure. Each cell in the
across-earthquake matrix represents the similarity between two en-
tire simulations using Bhattacharyya’s measure, as described above.
In this view, users can select cells in order to show a more detailed
comparison of one single earthquake against another (or even against
itself), comparing all motifs in one earthquake to all motifs in the

other. These two views allow users to explore interesting finding.
For example, in Fig. 1A, the eleventh earthquake is clearly quite
dissimilar to all other earthquakes (as evidenced by the mostly-white
row of values).

Ongoing work Now let’s review our tasks listed in Section 3.
For task 1, we applied a NLP model and different kernel methods
to summarize the simulations as much as we can to get a overview
quantitatively. For task 2, we build a context visualization to illus-
trate the details of the specific simulation. The design principle of
this view is to remain the ground truth as much as possible. For
task3, we follow the focus and context design, which allows user
to spot the earthquake simulation they are interested and explore it
in the context view. The prototype looks promising for now, since
it provides a way to explore the whole earthquake dataset. In the
meanwhile, there are a lot of points for us to complete.

Even with the matrix diagram visualizations, the screen becomes
cluttered as the number of simulation gets larger. In the future,
when we get thousands of simulations, the matrix diagram will
not scale. It is also worth considering if it’s possible to cluster
earthquakes hierarchically to maintain visual scalability. The way
we choose periods for segmentation is also clearly inappropriate;
we are currently investigating how to enable our machine learning
methods with multiple overlapping motifs ([T3]). Finally, even
though we have worked with domain experts in developing these
tools, a thorough validation of the designs, for example, efficient
navigation and interaction between different views, remains to be
done.
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