
Eurographics Conference on Visualization (EuroVis) (2014) STAR – State of The Art Report
R. Borgo, R. Maciejewski, and I. Viola (Editors)

State of the Art of Performance Visualization

Katherine E. Isaacs1, Alfredo Giménez1, Ilir Jusufi1, Todd Gamblin2, Abhinav Bhatele2,

Martin Schulz2, Bernd Hamann1, and Peer-Timo Bremer2

1Department of Computer Science, University of California, Davis
2Lawrence Livermore National Laboratory

Abstract
Performance visualization comprises techniques that aid developers and analysts in improving the time and energy
efficiency of their software. In this work, we discuss performance as it relates to visualization and survey existing
approaches in performance visualization. We present an overview of what types of performance data can be
collected and a categorization of the types of goals that performance visualization techniques can address. We
develop a taxonomy for the contexts in which different performance visualizations reside and describe the state
of the art research pertaining to each. Finally, we discuss unaddressed and future challenges in performance
visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

High performance computing (HPC) simulations drive in-
novation across a wide range of scientific fields, including
astrophysics, climate simulation, material science, combus-
tion, and energy production. Numerical problems in these
disciplines would take hundreds of years to compute with-
out massively parallel machines. To shape the development
of future fast, power-efficient architectures, and to acceler-
ate the pace of computational science, it is critical to gain a
comprehensive understanding of the factors that affect per-
formance and power consumption on HPC systems.

Optimizing the performance of parallel applications is
not straightforward, and performance analysis has become
increasingly complex. Programs now must take advantage
of multicore processors, programmable Graphics Process-
ing Units (GPUs), and multi-level non-uniform memory hi-
erarchies. On-node performance counters and instrumenta-
tion tools allow detailed performance measurements, but the
profusion of data they generate when applied to parallel pro-
grams makes exploring and understanding the data difficult.

This highlights the need for performance visualization
techniques. We present an overview of performance visual-
ization and survey existing work. Our contributions are:

• An overview of the available performance data.

• A classification of the goals of developers and analysts
who use performance visualization.

• A context-based classification and survey of existing per-
formance visualizations.

• A discussion of challenge areas in developing new and
more powerful performance visualizations.

Others [MMC02, KS93] have reviewed software visual-
ization techniques, but tended to lump visualizations focus-
ing on performance into a single category. We focus solely
on performance, avoiding other software visualization areas
such as software evolution, programming environments, vi-
sual programming, and software design. Performance tends
to overlap with debugging and general program comprehen-
sion, so we include work from those areas as appropriate.

2. Performance Data

We detail methods for acquiring performance data and the
types of performance data that can be generated. Many tools
can be used to record performance measurements [GKM04,
NS07, Rei05, MBDH99, SM06, BM11], allowing visualiza-
tion developers to gather their own datasets.

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

2.1. Methods for Acquiring Performance Data

2.1.1. Instrumentation

Instrumentation is the act of modifying a program for an
alternative purpose: in this case, for acquiring performance
data. At the most basic level, an instrumentation tool inserts
extra code into a program’s control flow. The instrumenta-
tion code may record timer values, or it may perform more
complex analysis, such as writing out program variable val-
ues and recording variable accesses and conditions met. In-
strumentation can be applied to source code before compil-
ing, or it can be applied at runtime using binary modifica-
tion [BM11] or sampling [ABF∗10]. Care must be taken to
ensure that the instrumentation does not change normal pro-
gram behavior or add excessive overhead.

2.1.2. Interception

Interception is a form of instrumentation that leverages func-
tion calls already present in program source code. Intercep-
tor functions are typically grouped together into a library,
which is then linked with a program, either dynamically or
statically. The program’s original function calls are linked
to the interception library, which executes special measure-
ment code, then delegates to the original implementation of
the intercepted function. Interception is useful for profiling
libraries because it can record the dynamic values of param-
eters passed to library calls. This can give more semantic
context to measurements. For example, communication per-
formance of many parallel programs is often measured by
intercepting calls to the Message Passing Interface (MPI),
and interceptor calls can differentiate between send and re-
ceive operations based on the size of data passed to them.
As with other types of instrumentation, interception must be
used sparingly to avoid incurring overhead.

2.1.3. Profiling and Tracing

Profiling and tracing are measurement techniques that deter-
mine where a single execution of a program spends its time.
Profiling tools, such as gprof [GKM04] and VTune [Rei05],
pause execution of a program repeatedly over a specified
sampling period and record the contents of either the instruc-
tion pointer or the entire call stack. At the end of a profil-
ing run, samples are analyzed to determine the percentage
of time spent in each part of the code. Profiles lose tempo-
ral information but quickly identify key bottlenecks in a pro-
gram. Tracing is similar to profiling in that it measures a pro-
gram’s execution, but it records a detailed time line of when
events occurred. For example, a trace might record func-
tion entry and exit times for an entire run. Because it does
not aggregate over time, recorded traces can require large
amounts of memory, which can cause excessive overhead
compared to profiling. TAU [SM06], Vampir [NAW∗96],
and EPILOG [WMfAM04] provide resources for creating
and dumping traces of programs that use MPI.

Profiling trades off comprehensive data for low overhead,

while tracing provides complete data on runtime events at
the cost of much higher overhead.

2.2. System Monitoring

The measurements discussed so far are application-level
measurements, in that they measure the performance of a
single application process. We can also acquire system-wide
performance information during a program’s execution by
executing external processes, enabling system-wide counters
(described in Section 2.3.1), or gathering other metadata at
runtime. Such methods require no modification to the code
or executables involved, and as such are simple to use. How-
ever, this kind of data is generally very coarse and semanti-
cally low-level. Further, because data is collected outside the
measured application process, it can be difficult to attribute
measurements to the target program’s source code.

2.3. Types of Performance Data

2.3.1. Counters

A counter is a special hardware register that accumulates the
number occurrences of a specified event over time. These
can be either software events, such as system calls, or hard-
ware events, such as floating-point operations, cache misses,
and packets received over a network link. The complete set
of countable events is specific to the platform being used but
is generally quite extensive. Commonly, counters are either
instrumented to initialize and terminate around a block of
code designated for analysis or run system-wide during pro-
gram execution. PAPI [MBDH99] provides a portable inter-
face to specify, initialize, terminate, and read out counters.

The overhead and precision of performance counter mea-
surements depends on how frequently they are sampled.
Sampling performance counters too frequently gives high
overhead, which can limit precision and make attributing
counted events to particular instructions difficult.

Counter data most directly benefits visualizations in the
hardware (Section 5) and software (Section 6) contexts. For
example, in a network visualization, packet counters can be
recorded per-link to visualize network traffic. Other hard-
ware counters can be mapped directly to the resource (CPU,
memory, etc.) responsible for generating the event. Counters
measured within instrumentation can also be attributed indi-
rectly to the instrumented code, giving software context.

2.3.2. Hardware Samples

Traditional accumulative hardware counters have been ex-
tended to provide more precise and detailed information
about particular instructions. Instead of simply incrementing
a counter, modern hardware performance units can write de-
tailed information about an instruction’s execution, includ-
ing its precise instruction pointer, progress within the pro-
cessor’s pipeline, total latency, and more. Intel and AMD

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

processor architectures both include hardware capabilities to
measure memory loads and stores, and Intel in addition pro-
vides a capability to sample branching events [Int07,DC07].

Hardware sampling provides finer granularity with low
overhead because it is implemented as part of a microproces-
sor. Tools still need to conduct detailed analysis to attribute
such samples to program source code.

2.3.3. Traces and Call Paths

Trace files contain lists of timestamped point events recorded
during program execution. These events can include proce-
dure entry and exit, message sends and receives, and ob-
ject acquisitions and releases. By following function entries
and exits, the call stack at any point in time can be derived.
These events may also be associated with certain hardware
elements like memory addresses or particular CPUs.

In some parallel environments, there may be one trace file
generated for each process or thread, so trace data size typ-
ically scales with the number of concurrent tasks. Parallel
systems may not guarantee high resolution clock synchro-
nization, resulting in some inaccuracy in event timestamps.

Depending on the features in the tracing tool and the op-
tions selected by the user, more or less information can be
included – for example, message sizes with the sends and
receives or parameters with the procedures. Some tools can
also record counter values with each event.

3. Performance Goals

The main goal of performance analysis and thus in perfor-
mance visualization is to make the application execute faster
or use less power. There are several sub-goals on the road
to efficiency that have utilized visualization. In this section
we discuss these goals, dividing them into three main cate-
gories: global comprehension, problem detection, and diag-
nosis and attribution.

3.1. Global Comprehension

Often the first step in optimizing an application is under-
standing the big picture regarding what occurred during an
execution. When specific targets for optimization are un-
known, analysts must narrow down regions of interest from
the whole application. Global comprehension goals also ex-
ist so users can get a sense of normal behavior as well
as compare predicted and achieved performance. Visualiza-
tions that present a strong overview or allow for pattern
matching may be particularly useful here.

The tasks involve understanding program structures and
resource utilization. Program structures include phases of
execution, algorithms, data structures, communication pat-
terns, data motion, access patterns, and data dependences.
Resource utilization includes the magnitude and distribution

of demands on processors, memory, and the network. Under-
standing the intricate relationshpis between these different
aspects of program behavior forms the necessary foundation
for identifying and understanding the performance of an ex-
ecution.

3.2. Problem Detection

Visualization can help developers detect performance prob-
lems such as anomalous behavior, performance bottlenecks,
load imbalance, and resource usage issues. Outlier detection,
pattern detection, focus+context features, and dependency
tracking can aid in finding problems.

Anomalous behavior includes deadlocks, livelocks, data
race issues, or unexpected behavior. Bottlenecks and imbal-
ance may exhibit similar symptoms like outlier computation
or message durations and significant idle times. These prob-
lems could also be detected by recognizing network conges-
tion or memory contention or by characteristics of the criti-
cal path through the execution.

Resource misuse includes low parallelism and false par-
allelism, where many threads are created unecessarily. Syn-
chronization may also be unnecessary and impede perfor-
mance. Another resource issue could be poor locality in data
accesses.

3.3. Diagnosis and Attribution

Diagnosis of a problem may follow directly from detection
or be more subtle. Problems may be attributed to software,
relationships with lines of code, variables, data structures, or
third party libraries. This may be a step in the process of rec-
ognizing poor distribution or division of work, a sub-optimal
algorithm or data structure, or a better overlap of messag-
ing and computation. In distributed and parallel systems, the
mapping of tasks to the system can likewise be an issue.

Problems may also be attributed to the system on which
the code is run. Operating system effects, memory or
scheduling policies, and network routing algorithms may
contribute to poor performance. Finding these effects gives
developers the information necessary to take any steps they
can to ameliorate them.

Highlighting the true sources of inefficiency can be dif-
ficult. Linking and correlation, pattern detection, depen-
dency tracking, and ensemble comparison features may aid
in achieving these goals.

4. Taxonomy

We organize our survey by the main context represented by
the visualization. By context, we refer to the concepts onto
which the data is mapped and of which the visualization is
constructed. In some cases, this context can be derived di-
rectly from recorded data, such as a visualization focusing

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

on a specific data column. In other cases, the context may
require some form of additional input about the environment
from which the data was collected, such as structure mined
from the source code or the graph of a distributed system.
Sometimes this information is assumed and hard-coded into
the visualization. We define four major contexts in perfor-
mance visualization: hardware, software, tasks, and applica-
tion.

Hardware is the natural context for data collected from
performance counters, as these are associated with individ-
ual hardware elements like nodes, cores, or links. Additional
context in hardware includes the hierarchical grouping of
the elements, the network topology of these elements, and
queues, scheduling and interfaces associated with these ele-
ments (even if they may be implemented by low-level soft-
ware).

Software covers contexts related to a program’s source
code. This includes static information such as the class struc-
ture of the program and individual variables as well as dy-
namic data associated with executions, such as call graphs,
developed data structures, and program flow.

Tasks contexts involve the individual tasks performing the
computation. Tasks contexts exist at many levels of granu-
larity: Processing elements, threads, and processes are frac-
tions of a single program. Jobs and commands represent en-
tire programs that may share a system. Note that processing
elements form a tasks context when viewed as mostly anony-
mous actors performing work, but they form a software con-
text when considered as specific (and largely different) ob-
jects interacting in an object-oriented program.

Application refers to the context of what is actually be-
ing computed. In scientific simulations, this is often bounded
physical space. Another common application context is the
set of matrices used in matrix libraries.

Some visualizations draw contexts from multiple cate-
gories. For example, a tasks layout may be influenced by the
underlying topology of the processors on which they run. In
these situations, we classify the visualization by the dom-
inant context, but make mention of the additional contexts
used. In the specific case of contexts related to the oper-
ating system (OS), we generally classify them under hard-
ware with the justification that the OS is typically not pro-
grammable to the extent that the software is.

Figure 1 provides a alternative picture, organizing the
most recent visualizations by complete tool rather than by
individual view as we discuss in the following sections. This
shows which tools cover multiple contexts, as well as which
goals they address and what sizes of problems they handle.

5. Hardware Visualization

Visualizations in the hardware context create a visual rep-
resentation of the hardware on which an application code is

Figure 2: A screenshot of Boxfish [LLB∗12, ILG∗12] show-
ing a selected set of nodes in a 3-dimensional torus network.
Nodes are arranged in a 3-dimensional graph with links de-
noted by edges (left) and an orthogonal projection shows a
subset of the edges without occlusion (right).

run. Often these visualizations map data from performance
counters onto a depiction of the hardware from which the
data originated. Building representations of different hard-
ware requires developing an intuitive metaphor for the topol-
ogy of the hardware. An effective hardware metaphor de-
composes the hardware into its basic elements while re-
taining its unique characteristics necessary for performance
analysis. These techniques aim to illustrate complex hard-
ware topology, identify hardware-based performance prob-
lems, and show the relationship between software and hard-
ware.

We categorize visualizations in the hardware context into
those depicting the computing network and those depicting
individual compute nodes.

5.1. Network

Supercomputing nodes are connected via a network. The
system can be interpreted as a graph where vertices are nodes
and edges are network links. The performance visualiza-
tions therefore often take the form of graph visualizations.
Because network topologies vary so widely in their struc-
tures, a challenge in creating network visualizations is that
each must be highly tailored to a specific topology. Tree-
based networks, such as fat-trees, lend themselves to hierar-
chical visualizations, while others, such as torus and hyper-
cube networks, lend themselves to complex graph layouts
and dimension-reducing projections.

A common general representation of the network graph
is an adjacency matrix with computation nodes as the x
and y axes sometimes referred to as a communication ma-

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Taxonomy Demonstrated Scale*

Visualization Techniques Papers H S T A Data Parallel A
no

m
al

ie
s

S
of

tw
ar

e

S
ys

te
m

Radial Tree X NR X X X

Node-Link Graph X NR X X X

Radial Tree, Animation X X N/A X X X X X
Layered Node-Link DOTS [BKS05] X X NR NR X X X X X
Clustered Node-Link, Animation X X NR X X X
Node-Link Graph X X X X
Radial Tree Kim et al. [KLJ07] X X NR X X X
Node-Link Trees, Indented trees Lin et al. [LTOB10] X NR NR X X X
Node-Link trees Rose et al. [RHJ07] X X NR X X

Node-Link graph, Animation X NR NR X X

Radial Tree X X X X
Node-Link trees STAT [AdSL∗09] X X NR X X X

X X streaming X X X X
Layered None-Link X X X X X X

X NR 1 X X

X X streaming X X X X

Shared Timeline X NR X X

X X X NR X X X

X X NR X X X

X X X X X X

X X N/A X X X

X N/A X X X

X NR X X

X X X X X X X X X

X X X NR X X X X X

X X gigabytes X X X X X

TraceVis [RZ05] X X NR X X X X X

X X X X X X

X X X terabytes X X X
Abstract Diagram X X N/A X X X
Dot Plot, Bar Charts X X 2 jobs X X X
Scriptable ParaProf [SML*12] X NR X X

Indented Trees, Matrix X X terabytes X X X X

Schulz et al. [SLB∗11] X X X NR X X X X
Bubble Chart, Animation X NR X X X
City Metaphor SynchroVis [WWF*13] X X X X X
Icicle Timeline, Bundles SyncTrace [KTD13] X X X X X X X
Sunburst, Matrix, Dendrogram X NR X X

Global
Compre.

Problem
Detection

Diagnosis/
Attribution

P
ro

gr
am

S

tr
uc

tu
re

R
es

ou
rc

e
U

sa
ge

B
ot

tle
n

ec
ks

an

d
Im

ba
la

nc
e

R
es

ou
rc

e
M

is
us

e

Bhatele et al. [BGI*12] 104 processes
Boxfish [LLB∗12,
ILG∗12] 104 nodes
Choudhury and Rosen
[CR11]

107
transactions

Frishman et al. [FT05] 102 objects
Heapvis [AKG∗10] 103 nodes

103

102 cores
Sambasivan et al.
[SSMG13]
Sigovan et al.
[SMM∗13a] 101 resources 103 processes

105 tasks
Clustered Node-Link,
Animation/Real Time Streamsight [DPA09] 103 tasks

Threadscope [WT10] 103 events 101 threads

Node-Link Graph, Treemap
Weidendorfer et al.
[WKT04]

Timeline, Stacked Graph, Small
Multiples

de Pauw et al.
[DPWB13] 103 tasks

Muelder et al. [MGM09] 104 processes
Gantt Charts, Timeline, Matrix,
Scatterplot

Muelder et al.
[MSM∗11] 103 cores

3D Parallel Gantt Chart,
Treemap/Force-directed layouts Triva [SHN10] 103 processes
Parallel Gantt Chart, Node-Link
Tree, Bar Charts Zinsight [DPH10] 105 events 102 processes
1D Color-Coded Array,
Histograms

Cheadle and Field
[CFA∗06]

101 memory
groups

1D Color-Coded Array Stacked
By Time

Moreta and Telea
[MT07] 105 allocations

Edge Bundling, Gantt Charts,
Hierarchies Extravis [CHZ∗07] 105 events
Parallel Gantt Chart, Indented
Trees, Code view

HPCToolkit [ABF*10,
TMCF*11, LMC13] 101 gigabytes 104 processes

Stacked Barcharts, Stacked
Timelines Lumière [BBH08] 106 decisions
Parallel Gantt Chart, Small
multiples, Plots, Ensemble

Projections [KZKL06,
LMK08] 104 processes

Stacked Barcharts, Scatterplot,
Histograms, Code Coloring

107
instructions

Icicle Timelines, Coordinated
views Trumper et al. [TBD10] 104 events 101 threads
Parallel Gantt Chart, Icicle
Timeline, Adjacency, Indented
Trees, Ensemble Timeline, Plots

Vampir [NAW*96,
BW12, ISC*12, VMa13] 105 processes
Choudhury et al. [CPP] 101 buffers
lviz [WYH10] 106 events

104 processes
Scalasca [GWW*10,
WG11] 105 cores

Color-coded 2D matrix,
histograms, 3D graph layout 104 cores

Sigovan et al. [SMM13] 104

102 objects 101 threads
107 events 102 threads

Trevis [AH10] 103 nodes

Figure 1: Classification of recent visualizations by context, scale, and goal. We limit the scale and goal to what was reported
(rounded); in practice the visualization may exceed what is listed in the chart. Any value that was not clear or missing entirely
in the publications are marked not reported (NR). We focus on works published in the last 10 years.

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

trix [HE91]. ParaGraph [HE91] depicts communication ma-
trices and color-codes the elements to indicate areas of heavy
link traffic. Zhou and Summers [ZSC03] use an adjacency
matrix to show quaternary fat-trees and depict transactions
by animating 3-dimensional glyphs on matrix element lo-
cations. While communication matrices effectively show all
links, they are very ineffective in showing the shape of the
network and the distance between non-neighboring nodes.
Furthermore, because they show all possible links, and ex-
isting links are shown twice (once for each direction), they
contain much visual redundancy.

Haynes et al. [HCR01] makes another general represen-
tation by depicting all nodes in a 2-dimensional grid and
color-coding all network links. As such, the user can follow
links by finding matching colors, with no redundant links or
wasted space. However, this technique still suffers in show-
ing the network shape and paths with multiple links. Another
issue is that humans are visually limited in discerning multi-
ple unique colors with accuracy, which limits the size of the
network this visualization can usefully represent.

Zhou and Summers [ZSC03] also use a modified 2-
dimensional H-tree layout to demonstrate the network topol-
ogy of the quaternary fat-tree used in a variety of HPC sys-
tems. They aggregate histograms and arcs in a third dimen-
sion to show messages passed between nodes. Muelder et
al. [MSM∗11] demonstrate another hierarchical style graph
visualization of the I/O network for Blue Gene/P. They de-
pict the network in a radial layout with storage nodes in the
center, compute nodes on the outside, and I/O nodes in be-
tween. The performance data is aggregated on the drawn
links between the different types of nodes. Both hierarchi-
cal visualizations demonstrate the ability to discover areas
of heavy communication traffic within their respective net-
work topology. Muelder et al. [MSM∗11] depict the entirety
of the performance data in a single 2-dimensional view,
while Zhou and Summers [ZSC03] take advantage of en-
coding data in the third dimension and using animation, at
the cost of occlusion and complexity. Purely hierarchical ap-
proaches are only possible for specific network topologies,
but effectively reduce the visual complexity of the network
graph by utilizing well-known hierarchical metaphors. We
also note that the aforementioned visualizations deal with
network trees of relatively shallow depth, but this has not yet
been an issue because existing HPC interconnects typically
do not use much deeper hierarchies.

Many visualizations lay out the network graph of spe-
cific network topologies as 2- or 3-dimensional meshes,
with nodes as vertices and links as edges. Boxfish [ILG∗12]
provides an interface for displaying performance data on a
mesh representing a 3-dimensional torus network. Landge
et al. [LLB∗12] create 2-dimensional projections of the 3-
dimensional torus network in Boxfish with no occlusion
(Fig. 2). Haynes et al. [HCR01] depicts, in addition to the
general 2-dimensional visualizations, another 3-dimensional

mesh layout of a 3-dimensional torus network. The mesh
layouts create more intuitive depictions of the network, but
there does not always exist an intuitive mesh projection for
a network topology type. As topologies increase in dimen-
sion, such as the 5-dimensional and 6-dimensional torus, it
becomes much more difficult to create a low-dimensional
mesh that is easily understood.

5.2. Node

The topologies of CPU nodes are often relatively small com-
pared to network topologies; these are on the order of tens
and hundreds of processors and memory resources. For this
reason, parallel programs usually employ a mapping from
N tasks to M processors, with N � M. Techniques for vi-
sualizing on-node computation space often take the form of
task-based visualizations [TBD10, KLJ07, dKSB00, Rei05,
ABF∗10]. However, such a mapping typically does not ex-
ist between tasks and memory resources, especially in the
context of multi-level memory hierarchies where multiple
processors share resources simultaneously. As a result, on-
node hardware visualizations have mostly targeted memory
address space and resource usage.

5.2.1. Processor Topology

Processor-based visualizations typically visually encode cu-
mulative performance data per-processor. Often, the layout
of processors is based on the hardware numbering and data
is represented with histograms or stacked bar charts [BD01,
ABF∗10]. Schulz et al. [SLB∗11] arranged processors based
on the 2D layout of the application (see Section 8) and dis-
played values using color.

Processor topologies are often embedded within larger
network visualizations to show processor resources within
individual nodes. Haynes et al. [HCR01] depicted nodes
with aggregated glyphs representing multiple processors on
each node. Similarly, Zhou and Summers [ZSC03] showed
each node as a subdivided grid with cells representing indi-
vidual processors.

5.2.2. Memory Topology

Several on-node memory visualizations represent the vir-
tual address space of memory as an infinite one-dimensional
space. A program is allocated a finite subset of that space by
the operating system, and all program variables lie within it.
As such, many techniques [GT89,MT07,CFA∗06] depict the
space of a single program with variables as finite contiguous
blocks within the program’s memory. Griswold et al. [GT89]
color-code different variables and their datatypes on a line
which wraps down multiple rows to more effectively uti-
lize screen space. Moreta and Telea [MT07] expands the 1-
dimensional layout to depict allocations and deallocations
over time, with the address space on the vertical axis and
time on the horizontal axis. They also include an overview

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Figure 3: Left: Memory visualization by [GT89]. Mem-
ory address space depicted as a 1-dimensional array wrap-
ping down several rows. Blocks indicate allocations along
address space, color legend indicates variable data types.
Printed with author’s permission. Right: Memory visualiza-
tion by [MT07]. Allocations depicted as 2D blocks with ad-
dress space on the vertical axis and time on the horizontal
axis. Image courtesy of A. Telea.

Figure 4: The output of lstopo, a tool provided by
hwloc [BCOM∗10] to visualize hardware topology. The
memory hierarchy is shown as a hierarchical space-filling
layout, with larger resources at the root and smaller caches
and processors at the leaves.

visualization with the address space collapsed, which more
clearly shows the order of allocations over time.

All the aforementioned address space-based visualiza-
tions target an understanding of allocator behavior and de-
pict fragmentation issues effectively. However, the visual-
ized datasets are often small, especially compared to com-
mon HPC applications. As programs utilize more and more
of the growing 1-dimensional memory space, we believe the
visualizations will not scale well enough to continue being
useful.

Other memory visualization techniques have focused on
depicting properties of the memory hierarchy, e.g. multi-
level caches, RAM, and disk, rather than the address space.

Alpern [ACS90] created an early visualization showing
the memory hierarchy of various hardware for the purpose
of observing data migration between disk, memory, trans-
lational lookaside buffer, and registers. The visualization
showed the different memory resources as boxes connected
by drawn links and also drew subsets of the data within the
memory resource they resided. While it did not embed per-
formance data, it created a model for understanding what oc-
curs in hardware and how cache-optimized algorithms more
efficiently utilize memory resources. hwloc [BCOM∗10], a
software package for the analysis of system attributes, pro-
vides a tool called lstopo that detects and displays the
topology of different architectures in a hierarchical space-
filling layout (Figure 4) but like the work of Alpern, also
does not encode performance data.

Choudhury et al. [CPP08] created an interactive visual-
ization depicting simulated memory access data embedded
within diagrams of the caches, address space, and itera-
tions. This visualization shows accesses and misses from in-
dividual cache lines and addresses. While highly detailed,
it would be unfeasible to scale beyond the demonstrated
number of memory resources. Rivet [BD01] displays an-
other diagram-like visualization of different caches with per-
processor memory performance data mapped to cache re-
sources.

Choudhury and Rosen [CR11] created a more abstract
representation using a radial space-filling layout, also for
simulated data. They represent different levels of cache as
rings around a central processor, with lower levels closer
to the processor, and depict data migration between levels
of cache as lines between ring segments, as seen in Fig-
ure 5. Mu et al. [MTSM03] created a visualization targeting
NUMA effects on multi-socket nodes by depicting different
NUMA domains and transactions between them. The visu-
alization also includes sufficient information to map areas of
NUMA transactions to source lines of code. Because they
focus on a specific performance issue, the visualization is
able to depict a small amount of information in a way that is
directly useful in optimizing code for NUMA efficiency.

Rosen [Ros13] specifically targets the memory topology
of NVIDIA graphics processors and create a visual model
depicting both processor and memory layout. The visual-
ization decomposes performance data of multiple process-
ing units (warps) to find representative subsets with which
to compare. The visualized warps include information about
memory banks used by each warp for the purpose of identi-
fying bank conflicts, which represent major memory access
bottlenecks. The idea to use representative subsets is an ef-
fective way to handle the plethora of performance data and
the extensively large processor topologies while retaining in-
formation about average behavior and outliers.

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Figure 5: Memory hierarchy visualization by [CR11]. Left:
Addresses are represented as points, and different sets of
points represent different memory resources. The outer ring
represents main memory, the outer four arcs of points rep-
resent L2 cache, and the inner two arcs represent L1 cache.
Lines between points denote migration of data between re-
sources. Right: Simulated transactions are associated with
the lines of code which caused them. Image courtesy of P.
Rosen.

6. Software Visualization

We survey software visualization only as it related to perfor-
mance visualization. Therefore software visualization tech-
niques applied for other purposes, such as education or soft-
ware maintenance, belong outside of the scope of this work.
As mentioned earlier, we define the software context as vi-
sualizations related to a program’s source code. This in-
cludes visualization of the software structures in terms of
classes and packages, visualization of the code itself, se-
rial traces of events related to method invocation, and call
graphs of specific execution. Data-structure visualization
tools are mainly used for education and debugging, although
Heapvis [AKG∗10] offers features that could be for perfor-
mance visualization.

6.1. Serial Trace Visualization

Serial trace visualization shows a sequence of events. Sev-
eral different visualization metaphors have been used for
the visualization of traces. One of them is a variation of
icicle plots, where width encodes duration [RR99, TBD10,
KTD13]. Figure 10 shows one such example; the icicle plot
is located at the top of the screenshot.

A common practice in trace visualizations is to assign one
of the axes to the time variable while the other axis is used to
represent different processes, classes, instructions or meth-
ods [JSB97, DPH10, CHZ∗07, MHJ91, MSM∗11, RZ05]. In
essence, most of these approaches represent different varia-
tions of Gantt charts. Some trace visualization tools animate
the execution of events and even provide additional views
for visualizing algorithms [JSB97, BBH08].

In contrast to the presented approaches, Cornelissen et

al. [CHZ∗07] place the methods in a circular layout while
the edges (events) that represent method calls are bundled
to avoid clutter (cf. Figure 6). They provide an additional
linked view where different methods are placed on top of
the view, calls between them are shown with horizontal lines,
and time is shown in the y axis. In somewhat similar fashion,
De Pauw and Heisig [DPH10] use the vertical axis for en-
coding time, while the horizontal view encodes different pro-
cesses. Within each process column, events are represented
as blocks color-coded according to different software com-
ponents. The horizontal position within a process column de-
notes the load module where the calls were generated.

Figure 6: Inner nodes represent different methods. Edges
show caller-callee relationships. The edge color gradient can
be used to denote the call direction or to show the call time–
less recent (light) to most recent (dark). Radial icicle plots
show the software structure, which provides insight into how
different packages are linked to each other. Image c©2007
IEEE. Reprinted, with permission, from [CHZ∗07].

The trace visualizations thus far are usually viewed in
fractions of the total duration. Wu et al. [WYH10] creates
dot plots of the entire trace versus itself, marking where the
events are the same. Additional information is encoded as
“bar codes” along the axes. The dot plot shows global pat-
terns along the full timespan of the trace. The same method
can be used to compare two different traces. Sambasivan et
al. [SSMG13] focus specifically on comparing two request-
flow traces with a side-by-side view, difference view, and
animation between them.

In order to facilitate the size of data or to gain insight into
the possible branching of events, traces are aggregated into
call graphs as described in [JSB97].

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

6.2. Call Graph Visualization

Together with serial trace views, call graph views appear
to be one of the most common visualizations in the soft-
ware context for performance data analysis. In most cases,
call graphs are tree structures, such as context call trees that
are usually produced by profilers to help understand caller-
callee relationships. Here, one should keep in mind not to
confuse the the debugging goal with the performance op-
timization goal. Call graph visualization for performance
analysis purposes usually encodes additional performance
data in itself or is shown together with other contexts such
as tasks or hardware.

The most common representation of call graphs uses the
node-link metaphor, where the node is usually a function
(method) and the link represents a function call. In this re-
gard, there are several tools that use an indented tree lay-
out for visualizing the call trees [ABF∗10, MW03, WG11].
Some of these tools integrate performance data directly into
the nodes by color-coding them [MW03]. Others use the hor-
izontal space provided by the indented layout to add tabular
data or even small barcharts or histograms. They may also
employ computational methods to find hot-paths, at which
point the corresponding branch would expand and direct
users’ attention to the relevant portion of the tree [ABF∗10].
However, due to the size and complexity of the call graphs,
performance and statistical data is usually visualized using
multiple coordinated views.

Other node-link layouts mainly use the conventional tree
drawing algorithms [SM06,DPH10,Rei90,DPH10,LTOB10,
WKT04, AdSL∗09]. Usually some data is visualized using
the color, shape or size of the nodes. For instance, DeRose et
al. [DHJ07] managed to integrate load balancing data inside
the nodes of the call tree by using the width and the height
of the nodes as well as by integrating small barcharts inside
the nodes.

Space-filling approaches such as treemaps [WKT04] and
sunbursts [AH10] have also been used to represent call trees.
Additionally, Adamoli et al. [AH10] present a view where a
dissimilarity matrix is used to compare several calling con-
text trees.

6.3. Code and Code Structure Visualization

Sometimes it is important to invoke specific lines of code
where a potential performance problem is detected. Many
tools that employ call graph visualization show the code
as well, so that when users click on the specific node in
the graph, the corresponding line of code is shown or high-
lighted in the code view [ABF∗10, SG93].

However, there are also approaches that visualize the code
and the performance data together. One of the first such ex-
amples is the Seesoft tool [ES92]. Here, each line of code
is represented by a line of pixels and color-coded according

to the number of executions, providing the user with an easy
way to notice “hot spots.” A similar idea is presented by Liao
et al. [LDB∗99] where each code character has been encoded
into a pixel and the color denotes various cycles in the code.
The aim of this visualization is improving parallelization.

There are approaches to show specific parts of code in
other contexts as well. TraceVis offers functionality where
the user can specify regions of static code [RZ05]. It will
then color-code the background regions of the trace view,
showing which static code elements map to the dynamic
trace data. It is also possible to select a specific region in the
dynamic trace view and automatically color-code all static
instructions.

In some cases certain structural features of the code, such
as class hierarchy, should be analyzed in context of the per-
formance data in order to understand if a potential prob-
lem is originating from the application code or an exter-
nal library. One approach is to visualize software modules
or class hierarchy. Icicle plots could be used in this case
as well [CHZ∗07]. Figure 6 shows the use of icicle plots
in a radial layout. SynchroVis shows program traces in the
static structure of the program, visualized using a three-
dimensional city metaphor [WWF∗13]. Here different fea-
tures of the city are mapped to code structures. For exam-
ple, districts represent packages while buildings represent
classes. This work is conceptually similar to the previous
two-dimensional representation approach [JSB97]. One of
the most straightforward methods to map different software
components or modules in other contexts is color. For in-
stance, different parts of a call tree can be color-coded ac-
cording to the component they belong to [AH10, LTOB10].

7. Tasks Visualization

The fundamental context required by tasks visualizations are
the attribution of the performance data to the abstract actors
that generated it. These actors include processes, threads,
and jobs. Further context in this area includes the hierarchi-
cal structure of the actors (e.g. what threads belong to what
process). Some tasks visualizations are able to take advan-
tage of other contexts, such as the specific nodes or sites
where the process is being run.

Execution traces and system logs are often recorded with
tasks context. These documents capture timestamped events
such as function entry, message receives, and job initiation.
Traces and logs offer analysts a full record of what occurred,
but this increases the difficulty of making sense of them. Or-
dering of events can unveil bottlenecks, delays, and anoma-
lies. Patterns in utilization and communication can be found
over the duration of the data collection. The time component
of this data is essential in this analysis, so there are many vi-
sualizations that attempt to display the time streams per task.
We discuss these in Section 7.1.

However, time is not a necessary component in tasks vi-

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

sualizations. Sometimes aggregating information over a du-
ration, either from the trace or through profiling, can yield
insight into program behavior as well. Non-time tasks visu-
alizations create a snapshot of task interactions over time.
These are discussed in Section 7.2.

7.1. Time in Tasks Visualizations

Figure 7: Vampir [NAW∗96]. The main visualization is the
timeline view. Bar color indicates whether application or
MPI functions are active. The black lines indicate messages
between processes.

The majority of time-based tasks visualizations assign
time to the x or y axis and then constrain the events of
each task to bars in a row or column respectively, similar
to a Gantt chart. These visualizations generally omit the call
stack information found in single task trace visualizations
(Section 6) as available space for the parallel tasks is already
a challenge. A typical visualization of this type would be
Vampir [NAW∗96] as shown in Figure 7. We refer to these
as timelines and classify them and closely related ones in
Section 7.1.1. Other techniques such as animation and soni-
fication are discussed in Section 7.1.2.

7.1.1. Task Timelines

We classify task timeline visualizations by their representa-
tion of both time and the relationships between individual
timelines. Most visualizations use physical time (e.g. wall-
clock time, system time, and cycle counts), which is gen-
erally what is recorded in traces and logs. However, some
visualizations support logical time, a partial ordering based
on dependency information, often Lamport clocks [Lam78].
Cuny et al. [CHK92] claim that logical time is needed for
debugging the correctness of parallel programs, while phys-
ical time is more important for performance where the ulti-
mate goal is decreasing the total time required by the pro-
gram. PARADE [KS98] supports phase time which is a par-
tial ordering of phases of an execution rather than individual
events. However, computing phases from trace data without
extra information is difficult.

Some visualizations show no relationships between time-
lines [DPH10, SG93, LSV∗89, TBD10, Sha90, Rei90]. Zin-
sight [DPH10] recognizes a hierarchy of tasks and allows

Figure 8: SIEVE contour plot shows event wavefront.
Reprinted from [SG93], with permission from Elsevier.

users to select which granularity to plot events. While Vam-
pir’s default view shows messages between timelines, it also
provides cluster timelines which show aggregated events
over the cluster with no messages [VMa13].

SIEVE [SG93] draws contour lines across the tasks where
the events are equivalent as shown in Figure 8. Muelder et
al. [MGM09] show log-scale duration versus time, rather
than placing tasks or groups of tasks on the y-axis. Instead,
events from all tasks were drawn over the same area and
overplotting and blending techniques were used to show
consensus (or lack their of) among tasks.

In some cases, intertimeline relationship data may not ex-
ist. HPCToolkit [ABF∗10] visualizes sampled data rather
than full traces. It shows all tasks in an information mural
style display, sampling each pixel for its task and sample
contributors. Individual tasks can be selected for a detailed
single timeline display.

De Pauw et al. [DPWB13], SeeLog [EL96], and
lviz [WYH10] show separate program instances, which
unlike processes do not interact directly. The De Pauw et al.
visualization (Figure 9) displays job lifetimes on a shared
system in an online stacked graph-like visualization that
groups jobs by user. Rather than assigning rows to jobs per-
manently, De Pauw et al. changes the y value over time so the
clusters remain continguous and separate from each other.
SeeLog shows classes of applications per row with glyphs
indicating how many are active rather than bars. lviz visu-
alizes job logs on Microsoft Windows in a dot plot, revealing
repeated patterns of jobs over time. The dot plot can be used
to compare two separate logs by assigning one log to rows
and another to columns.

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Figure 9: De Pauw et al. timeline of jobs on a shared
system. Image c©2013 IEEE. Reprinted, with permission,
from [DPWB13].

Timelines may affect each other through dependency con-
straints such as message sends and receives or access to
shared objects. Message dependencies are often shown as
a line or arrow from the send on one timeline to the re-
ceive on another [YSM95,SKV03,ZLGS99,LMCF90,FB89,
dKSB00, KS98, HE91, PLCG95, KZLK06, TSS98, KTD13,
SHN10, SRWS99, KTM97, KG96]. Including these types of
dependencies makes it possible to highlight critical paths.

Virtue [SRWS99] draws timelines in 3-dimensional
space, using a ring layout for tasks rather than an axis. The
visualization is also compatiable with a CAVE environment.
VisuaLinda [KTM97] and Triva [SHN10] use 3D in order to
cluster tasks by their location on physical processors in two
of the dimensions.

SyncTrace [KTD13], shown in Figure 10, draws a se-
rial timeline overview for a selected thread and a focus
view which draws multiple threads as sectors of a circle.
The call stack is maintained for these threads, resulting in a
sunburst-like design. Relationships between the focus thread
and other threads are drawn as aggregated edges, similar to
a chord diagram.

Figure 10: SyncTrace [KTD13] visualization shows thread
call stacks and relationships between them. Image courtesy
of B. Karran.

In addition to message and shared object dependencies,
there may be relationships regarding the lifetime of threads.

While these are also dependencies, we separate them be-
cause they involve the addition or removal of tasks in the
visualization. Many of the visualizations supporting lifetime
relationships also support message or shared object depen-
dencies.

DOTS [BKS05] uses a Sugiyama-style layout algorithm
to assign threads to columns and route dependency lines. The
threads are grouped by processor. ThreadScope [WT10] also
uses a layered node-link diagram with line styles represent-
ing different relationships and node styles representing both
threads and memory. The graph can be condensed through
grouping by malloc calls or classes.

Several visualizations represent parent-child relationships
among tasks but do not emphasize creation and destruction;
instead the space is allocated to the task far past the extent
of its lifetime. We do not consider these as showing lifetime
relationships because it is not clear if the task is non-existant
or just idle. Wang and Kunz [WK00] modify the usual time-
line view to show the lifetimes of migratable objects as they
move between individual timelines representing machines in
distributed systems.

Table 1 organizes the task timeline visualizations by what
relationships are present between the individual timelines
and what type of time is displayed.

7.1.2. Other Time-based Tasks Visualizations

Several visualizations use animation to represent time,
showing the state of the tasks at every instance.
VISTOP [BB92] uses a mailbox metaphor to show messag-
ing and semaphore activity and a directory to show thread
spawning relationships. SynchroVis [WWF∗13] uses a city
metaphor to represent the static structure of the program
with special buildings where added floors represent thread
and shared object creation. Arrows connecting to the special
buildings show the evolution of the system in time.

Belvedere [HC88] and its follow-up Ariadne [CFH∗93]
animate messages between processes in logical time for de-
bugging. Streamsight [DPA09] creates a node-link diagram
with processing elements as nodes and streams between
them as links. Grouping by job or host makes aggregation
and clutter reduction possible. This visualization allows for
real-time monitoring but can also be recorded and replayed.

Sigovan et al. [SMM13b] animate events as rising bub-
bles per process which fade into the background at the end
of their duration, creating a contextual history. Using over-
plotting and blending techniques, this animation is able to
scale to 16K processes.

PARADE [KS98] and PVaniM [TSS98] place processes
on a circle and animate messages moving between them.
Growing Squares [ET03] similarly places processors when
animating dependency relationships between processes in
logical time. Process squares ‘grow’ outlines that incorpo-
rate the colors of other processes that have causally affected

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Relationships Time Visualizations
None Physical ConcurrencyVisualizer [GN10], De Pauw et al. [DPWB13], Devise [KMLM97], Falcon [GEK∗95],

HPCToolkit [ABF∗10], lviz [WYH10], Muelder et al. [MGM09], PIE [LSV∗89], Reillly [Rei90],
SeeLog [EL96], Sharma [Sha90], SIEVE [SG93], Trümper et al. [TBD10], Vampir [NAW∗96],
Zinsight [DPH10]

Dependency Physical AIMS [YSM95], Jumpshot [ZLGS99], Moviola [LMCF90, FB89], Pajé [dKSB00], PARADE [KS98],
ParaGraph [HE91], PARAVER [PLCG95], Projections [KZLK06], PVaniM [TSS98], SyncTrace [KTD13],
Triva [SHN10], Virtue [SRWS99], VisuaLinda [KTM97], XPVM [KG96]

Logical Concurrency Maps [Sto88], DeWiz [SKV03], Moviola [LMCF90, FB89]
Lifetime Physical Wang and Kunz [WK00]

Logical DOTS [BKS05], Threadscope [WT10], Zernik et al.‘ [ZR91, ZSM92]

Table 1: Classification of Tasks Timelines

Figure 11: Snapshot from the animated trace visualization
by Sigovan et al. [SMM13b]. As events persist, they rise up-
ward logarithmically. Image courtesy of C. Sigovan.

them. Frishman and Tal [FT05] animate migrating object in-
teractions using the Growing Squares technique to show ob-
ject history. Clusters representing object locations lend their
colors to objects that pass through. This visualization re-
duces clutter by more aggressively aggregating clusters fur-
ther from the user’s focus.

Yamaguchi and Itoh [YI03] animate the moving locations
of tasks on hierarchical distributed systems. The hierarchy
is shown using nested rectangles. Using the third dimension,
they encode other metrics in the height of each process.

Sonification methods have also been used. Francioni et
al. [FAJ91] and Pablo [RRA∗93] map tasks to separate in-
struments or tones, having them sound for the duration of
particular events or other states of interest (e.g. idleness).

7.2. Visualization of Non-Time Tasks

Several visualizations show the process communication
graph, a summary of all messages among processes in
some time frame. Adjacency matrices are frequently used
[HE91,RRA∗93,VMa13]. Bhatele et al. [BGI∗12] modify a
node-link diagram to aggregate processes with similar delay
behavior into arcs.

Kim et al.’s [KLJ07] method represents threads as points
on a cone, with the distance from the apex indicating cre-
ation depth. Threads can be aggregated to reduce clutter.

ParaProf [SML∗12] colors tasks by user-chosen metrics and
provides a scripting language so the user can decide the task
layout.

8. Application Visualization

Application contexts are specific to the problems that their
target programs are attempting to solve. This generally cor-
responds to the perceived space of the input and output of the
program. For example, the application context of a matrix
multiplication program is the space of the matrices involved
in the operation.

ParaGraph [HE91] includes facilities to generate perfor-
mance displays in the application context, noting that such
displays could provide new detail and insight, but also men-
tioning that such displays are highly non-trivial and appli-
cation specific. They show an example of data transaction
counts of a matrix operation overlaid onto the input and out-
put matrices.

A similar visualization involving parallel prefix sums was
shown by Stasko and Kraemer [SK93]. They created an an-
imation showing different processors operating on different
parts of the input dataset. This visualization proved useful in
debugging parallelism issues in the prefix code and provided
a stronger understanding of the utilized parallelism.

Schulz et al. [SLB∗11] observed that application devel-
opers find the application context highly intuitive. They cre-
ated visualizations which successfully uncover application-
specific performance bottlenecks, by arranging processors
and their generated counter data by the physical regions
within the bounded fluid dynamics simulation they com-
puted. The visualization showed that areas of high compu-
tational and bandwidth costs occurred in areas of high fluid
turbulence, as seen in Figure 12. Schulz et al. also observed
a need to complement the application context view with
other contexts, such as hardware and communication, noting
that problems become more obvious when projected into the
context from which they originate.

Wylie and Geimer [WG11] likewise created a visualiza-
tion with processor computation time attributed to physical

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

(a) Aluminum density visualization over several
timesteps.

(b) Floating-point operations mapped to application con-
text over several timesteps

Figure 12: Floating-point operations are highly correlated
with aluminum density of their associated application ar-
eas. Images c©2011 IEEE. Reprinted, with permission,
from [SLB∗11].

regions in a large scale reservoir simulation. They also ob-
served application-specific performance bottlenecks where
certain areas of the dataset incurred larger computational
overhead.

The aforementioned applications generally have intuitive
contexts in 2 or 3-dimensional space, but it is a challenge
to depict the application context of programs with high-
dimensional or abstract output. Furthermore, application vi-
sualizations have required significant implementation effort
by the analyst, rather than allowing them to leverage existing
visualization tools associated with simulation output rather
than performance.

9. Challenges

In this section we discuss challenges in performance visu-
alization. Many of the challenges highlight a need for close
and continued collaborations with domain experts. The chal-
lenges of parallel scale, system complexity, and attribution
require expert input to craft useful and informative visual-
izations. Experts in HPC are not strangers to issues of data
scale, and it is highly beneficial to harness this experience in
an effort to create scalable and useful visualizations. Finally,
the integration of new visualizations with data collection or
performance workflows necessitates sustained partnerships
between communities.

9.1. Scale

As the scale of computing resources continues to grow ex-
ponentially, and along with it, the scale of the collected per-
formance data, it is becoming increasingly critical to cre-
ate highly scalable performance visualizations. There are
two major scale challenges facing performance visualiza-
tion: parallel scale and data scale. Parallel scale refers to the
number of elements required by the context that the visu-
alization is attempting to represent simultaneously. This in-
cludes nodes, cores, and memory addresses in the hardware
context and tasks, processes, threads, and jobs in the tasks
context. Data scale refers to the amount of data collected
that need not necessarily be displayed all at once, but must
be processed by the visualization. There are several ways to
think about data scale – file size, execution time, and total
number of samples or events. Figure 1 shows the reported
parallel and data scales of the most recent performance visu-
alizations.

As Figure 1 shows, few of the visualizations methods
cited demonstrated an ability to handle tens of thousands of
simultaneous tasks, and some that do only do so for statisti-
cal plots, not for more sophisticated views. Others simply av-
erage across pixels, which may hide the insights users seek.
At the same time, requiring users to pan extensively within
detailed visualizations is not reasonable. While some tools
may scale, the utility of the visualization does not. Creat-
ing sweet spots between full aggregation and largely unpro-
cessed detail so that the necessary contexts are still shown
remains a challenge.

As the size of acquired performance data increases, it has
become necessary to scale not only the visualization, but
the underlying data. Though this problem has been often
neglected by the visualization community, tools developed
within the performance community have begun to address
the issue. HPCToolkit [TMCF∗11] maintains interactivity
of its views by sampling the data rather than reprocessing
all of it during panning and zooming. It reduces the size
of data during collection through sampling as well. Vam-
pir [ISC∗12] can utilize the same systems it is meant to
analyze, handling terabytes of data via the parallel filesys-
tem and an allotment of processors. It can also employ data
reduction techniques during collection. As the data size in-
creases, it may not be feasible to save the entirety of the col-
lected data, so integrating more approaches like the parallel
system usage of Vampir or the sampling-based functionality
of HPCToolkit is crucial. The greater use of sampling and
the effects of overhead and clock synchronization necessi-
tate more techniques for handling uncertainty.

9.2. System Complexity

Many of the continuing challenges in performance visual-
ization are the product of the ever-evolving technology in
high performance computing systems. Network topologies

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

are constantly changing and increasing in dimensionality to
improve parallelism and efficiency, and as a result existing
techniques may quickly become obsolete. Previous networks
had natural embeddings into 2- or 3-dimensional space but
this is no longer the case for the largest systems. New layouts
are needed that can leverage the inherent structure of these
networks and improve developer’s understanding of them.
Furthermore, as hardware developers expose new ways to
capture different performance events, visualizations must
adapt to fully utilize the new and changing performance data
and contexts.

9.3. Ensemble Runs

Analysts often must make comparisons among different ex-
ecutions of the same application to determine the most likely
causes of performance differences or to validate the perfor-
mance benefits of changes in algorithms or parameters. Few
visualizations we surveyed had support for handling ensem-
ble datasets. Those that did were limited to or demonstrated
only a few at a time [BW12, WYH10, TMCF∗11]. Instead,
users generally compare two executions by examining vi-
sualizations of each one individually. This is an area where
visualization can help reduce the cognitive load on the ana-
lyst. Showing differences can be tricky – even in the two-run
case there are issues of normalizing metrics and resolving
multiple corresponding entities.

9.4. Coordination

The current state of performance visualization software is
scattered amongst a variety of tools and techniques serv-
ing different purposes. As different techniques are able to
accomplish different subsets of the tasks delineated in sec-
tion 3 and no individual technique accomplishes all of them,
this chaotic state is largely unavoidable. While we presented
the relevant research in four context categories, we have ob-
served that the distinction between contexts is not always
well-defined and as such visualizations need not be con-
strained to any single one. Many of the studies we have
observed have highly validated the usefulness of combin-
ing multiple techniques, whether closely tied together in the
form of linked views [VMa13], or simply applying differ-
ent techniques to the same target program [KZLK06]. One
of the main challenges in performance visualization there-
fore is the development of improved integrations of multiple
views and performance data in intuitive ways.

9.5. Attribution

While complex visualizations can elucidate novel or inter-
esting performance data, it is important to keep in mind that
the visualization has to aid the developer in accomplishing
some set of performance goals. Many of the examples in Fig-
ure 1 reflect case studies that rely heavily on expertise or
insight from the user. Most solutions that handle attribution

directly do so at the function call or line-of-code level. The
area of performance goals targeted least by the surveyed pa-
pers was attributing performance problems to semantically
high-level reasons and determining possible avenues of im-
proving the code.

9.6. Evaluation

When dealing with more complex systems and programs, es-
pecially in the high-performance computing field, the num-
ber of domain experts capable of participating in user studies
is small. Therefore, full-fledged usability evaluations or con-
trolled experiments with large numbers of participants are
rare (for example [SSMG13]). However, variations of ex-
pert evaluations can be performed [TM05] as was done in
De Pauw and Heisig [DPH10]. These require a small num-
ber of domain and visualization experts, making them more
feasible to conduct. The surveyed papers have in general not
studied the usability of performance visualization methods
and interfaces. Expert evaluations with the inclusion of us-
ability would further help to fill this gap in knowledge.

10. Conclusions

Performance visualization is a growing field which contin-
ues to adapt to the growing ecosystem of high performance
computing. As supercomputers become more powerful, in-
creasing effort is required to understand how different soft-
ware is run on such machines and optimize their perfor-
mance. Rising complexity of systems and performance data
collected on them invites the utilization of visualization and
analysis tools. Largely driven by necessity, performance vi-
sualization presents new and challenging research questions,
many of which remain to be answered.

We have presented a survey of existing approaches in per-
formance visualization. The current work has been orga-
nized based on the primary contexts in which the data has
been visualized. Moreover, we have presented and catego-
rized the goals that domain experts seek to address through
visualization. Finally, we have discussed the existing chal-
lenges in this domain. This survey should act as an intro-
duction to the state of the art for information visualization
experts seeking to apply their knowledge to new domains. It
also may aid HPC professionals in exploring new tools and
methods to analyze their data.

11. Acknowledgements

We thank the participants of the Dagstuhl Perspectives
Workshop 14022 “Connecting Performance Analysis and
Visualization to Advance Extreme Scale Computing” for
their constructive discussions that inspired parts of this pa-
per.

This work supported in part by the University of Cal-
ifornia Laboratory Fees Research Grant Program and the

c© The Eurographics Association 2014.

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Department of Energy Office of Science Graduate Fellow-
ship Program (DOE SCGF) administered by ORISE-ORAU
under contract no. DE-AC05-06OR23100. This work per-
formed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. LLNL-CONF-652873.

References
[ABF∗10] ADHIANTO L., BANERJEE S., FAGAN M., KRENTEL

M., MARIN G., MELLOR-CRUMMEY J., TALLENT N. R.: Hpc-
toolkit: tools for performance analysis of optimized parallel pro-
grams. Concurrency and Computation: Practice and Experience
22, 6 (2010), 685–701. doi:10.1002/cpe.1553. 2, 6, 9,
10, 12

[ACS90] ALPERN B., CARTER L., SELKER T.: Visualizing com-
puter memory architectures. In Proceedings of the 1st Con-
ference on Visualization ’90 (Los Alamitos, CA, USA, 1990),
VIS ’90, IEEE Computer Society Press, pp. 107–113. doi:
10.1109/VISUAL.1990.146371. 7

[AdSL∗09] AHN D. H., DE SUPINSKI B. R., LAGUNA I., LEE
G. L., LIBLIT B., MILLER B. P., SCHULZ M.: Scalable tempo-
ral order analysis for large scale debugging. In Proceedings of the
Conference on High Performance Computing Networking, Stor-
age and Analysis (New York, NY, USA, 2009), SC ’09, ACM,
pp. 44:1–44:11. doi:10.1145/1654059.1654104. 9

[AH10] ADAMOLI A., HAUSWIRTH M.: Trevis: A context tree
visualization & analysis framework and its use for classifying
performance failure reports. In Proceedings of the 5th Inter-
national Symposium on Software Visualization (New York, NY,
USA, 2010), SOFTVIS ’10, ACM, pp. 73–82. doi:10.1145/
1879211.1879224. 9

[AKG∗10] AFTANDILIAN E. E., KELLEY S., GRAMAZIO C.,
RICCI N., SU S. L., GUYER S. Z.: Heapviz: Interactive heap
visualization for program understanding and debugging. In Pro-
ceedings of the 5th International Symposium on Software Visu-
alization (New York, NY, USA, 2010), SOFTVIS ’10, ACM,
pp. 53–62. doi:10.1145/1879211.1879222. 8

[BB92] BEMMERL T., BRAUN P.: Visualization of message
passing parallel programs. In Parallel Processing: CON-
PAR 92-VAPP V, Bougé L., Cosnard M., Robert Y., Trystram
D., (Eds.), vol. 634 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1992, pp. 79–90. doi:10.1007/
3-540-55895-0_400. 11

[BBH08] BERNARDIN T., BUDGE B. C., HAMANN B.: Stacked-
widget visualization of scheduling-based algorithms. In Pro-
ceedings of the 4th ACM Symposium on Software Visualization
(New York, NY, USA, 2008), SoftVis ’08, ACM, pp. 165–174.
doi:10.1145/1409720.1409746. 8

[BCOM∗10] BROQUEDIS F., CLET-ORTEGA J., MOREAUD S.,
FURMENTO N., GOGLIN B., MERCIER G., THIBAULT S.,
NAMYST R.: hwloc: A generic framework for managing hard-
ware affinities in hpc applications. In Parallel, Distributed and
Network-Based Processing (PDP), 2010 18th Euromicro Inter-
national Conference on (Feb 2010), pp. 180–186. doi:10.
1109/PDP.2010.67. 7

[BD01] BOSCH R., DEPT S. U. C. S.: Using visualization to un-
derstand the behavior of computer systems. Stanford University,
2001. 6, 7, 14

[BGI∗12] BHATELE A., GAMBLIN T., ISAACS K. E., GUNNEY
B. T. N., SCHULZ M., BREMER P.-T., HAMANN B.: Novel
views of performance data to analyze large-scale adaptive ap-
plications. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Anal-
ysis (Los Alamitos, CA, USA, 2012), SC ’12, IEEE Computer
Society Press, pp. 31:1–31:11. doi:10.1109/SC.2012.80.
12

[BKS05] BLOCHINGER W., KAUFMANN M., SIEBENHALLER
M.: Visualizing structural properties of irregular parallel compu-
tations. In Proceedings of the 2005 ACM Symposium on Software
Visualization (New York, NY, USA, 2005), SoftVis ’05, ACM,
pp. 125–134. doi:10.1145/1056018.1056036. 11, 12

[BM11] BERNAT A. R., MILLER B. P.: Anywhere, any-time bi-
nary instrumentation. In Proceedings of the 10th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
(New York, NY, USA, 2011), PASTE ’11, ACM, pp. 9–16.
doi:10.1145/2024569.2024572. 1, 2

[BW12] BRUNST H., WEBER M.: Custom hot spot analysis of
hpc software with the vampir performance tool suite. In Par-
allel Tools Workshop (2012), pp. 95–114. doi:10.1007/
978-3-642-37349-7_7. 14

[CFA∗06] CHEADLE A. M., FIELD A. J., AYRES J. W., DUNN
N., HAYDEN R. A., NYSTROM-PERSSON J.: Visualising dy-
namic memory allocators. In Proceedings of the 5th Inter-
national Symposium on Memory Management (New York, NY,
USA, 2006), ISMM ’06, ACM, pp. 115–125. doi:10.1145/
1133956.1133972. 6

[CFH∗93] CUNY J., FORMAN G., HOUGH A., KUNDU J., LIN
C., SNYDER L., STEMPLE D.: The Ariadne debugger: Scal-
able application of event-based abstraction. In Proceedings of
the 1993 ACM/ONR Workshop on Parallel and Distributed De-
bugging (New York, NY, USA, 1993), PADD ’93, ACM, pp. 85–
95. doi:10.1145/174266.174276. 11

[CHK92] CUNY J., HOUGH A., KUNDU J.: Logical time in visu-
alizations produced by parallel programs. In Visualization, 1992.
Visualization ’92, Proceedings., IEEE Conference on (1992),
pp. 186–193. doi:10.1109/VISUAL.1992.235209. 10

[CHZ∗07] CORNELISSEN B., HOLTEN D., ZAIDMAN A., MOO-
NEN L., VAN WIJK J. J., VAN DEURSEN A.: Understand-
ing execution traces using massive sequence and circular bun-
dle views. In Proceedings of the 15th IEEE International Con-
ference on Program Comprehension (Washington, DC, USA,
2007), ICPC ’07, IEEE Computer Society, pp. 49–58. doi:
10.1109/ICPC.2007.39. 8, 9

[CPP08] CHOUDHURY A. I., POTTER K. C., PARKER S. G.: In-
teractive visualization for memory reference traces. Computer
Graphics Forum 27, 3 (May 2008), 815–822. doi:10.1111/
j.1467-8659.2008.01212.x. 7, 14

[CR11] CHOUDHURY A. N. M. I., ROSEN P.: Abstract visu-
alization of runtime memory behavior. In Proc. 6th IEEE Int.
Workshop on Visualizing Software for Understanding and Anal-
ysis (2011). doi:10.1109/VISSOF.2011.6069452. 7,
8

[DC07] DRONGOWSKI P. J., CENTER B. D.: Instruction-based
sampling: A new performance analysis technique for amd family
10h processors. Advanced Micro Devices, Inc (2007). 3

[DHJ07] DEROSE L., HOMER B., JOHNSON D.: Detecting ap-
plication load imbalance on high end massively parallel sys-
tems. In Euro-Par (2007), Kermarrec A.-M., Bougé L., Priol T.,
(Eds.), vol. 4641 of Lecture Notes in Computer Science, Springer,
pp. 150–159. doi:10.1007/978-3-540-74466-5_17.
9

[dKSB00] DE KERGOMMEAUX J. C., STEIN B., BERNARD P.:
Pajé, an interactive visualization tool for tuning multi-threaded
parallel applications. Parallel Computing 26, 10 (2000), 1253 –
1274. doi:10.1016/S0167-8191(00)00010-7. 6, 11,
12

c© The Eurographics Association 2014.

http://dx.doi.org/10.1002/cpe.1553
http://dx.doi.org/10.1109/VISUAL.1990.146371
http://dx.doi.org/10.1109/VISUAL.1990.146371
http://dx.doi.org/10.1145/1654059.1654104
http://dx.doi.org/10.1145/1879211.1879224
http://dx.doi.org/10.1145/1879211.1879224
http://dx.doi.org/10.1145/1879211.1879222
http://dx.doi.org/10.1007/3-540-55895-0_400
http://dx.doi.org/10.1007/3-540-55895-0_400
http://dx.doi.org/10.1145/1409720.1409746
http://dx.doi.org/10.1109/PDP.2010.67
http://dx.doi.org/10.1109/PDP.2010.67
http://dx.doi.org/10.1109/SC.2012.80
http://dx.doi.org/10.1145/1056018.1056036
http://dx.doi.org/10.1145/2024569.2024572
http://dx.doi.org/10.1007/978-3-642-37349-7_7
http://dx.doi.org/10.1007/978-3-642-37349-7_7
http://dx.doi.org/10.1145/1133956.1133972
http://dx.doi.org/10.1145/1133956.1133972
http://dx.doi.org/10.1145/174266.174276
http://dx.doi.org/10.1109/VISUAL.1992.235209
http://dx.doi.org/10.1109/ICPC.2007.39
http://dx.doi.org/10.1109/ICPC.2007.39
http://dx.doi.org/10.1111/j.1467-8659.2008.01212.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01212.x
http://dx.doi.org/10.1109/VISSOF.2011.6069452
http://dx.doi.org/10.1007/978-3-540-74466-5_17
http://dx.doi.org/10.1016/S0167-8191(00)00010-7

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

[DPA09] DE PAUW W., ANDRADE H.: Visualizing large-scale
streaming applications. Information Visualization 8, 2 (2009),
87–106. doi:10.1057/ivs.2009.5. 11

[DPH10] DE PAUW W., HEISIG S.: Zinsight: A visual and an-
alytic environment for exploring large event traces. In Proceed-
ings of the 5th International Symposium on Software Visualiza-
tion (New York, NY, USA, 2010), SOFTVIS ’10, ACM, pp. 143–
152. doi:10.1145/1879211.1879233. 8, 9, 10, 12, 14

[DPWB13] DE PAUW W., WOLF J. L., BALMIN A.: Visualiz-
ing jobs with shared resources in distributed environments. In
VISSOFT (2013), Telea A., Kerren A., Marcus A., (Eds.), IEEE,
pp. 1–10. doi:10.1109/VISSOFT.2013.6650535. 10,
11, 12

[EL96] EICK S. G., LUCAS P. J.: Displaying trace
files. Softw. Pract. Exper. 26, 4 (Apr. 1996), 399–
409. doi:10.1002/(SICI)1097-024X(199604)26:
4<399::AID-SPE8>3.0.CO;2-J. 10, 12

[ES92] EICK S. G., STEFFEN J. L.: Visualizing code profil-
ing line oriented statistics. In Proceedings of the 3rd Con-
ference on Visualization ’92 (Los Alamitos, CA, USA, 1992),
VIS ’92, IEEE Computer Society Press, pp. 210–217. doi:
10.1109/VISUAL.1992.235206. 9

[ET03] ELMQVIST N., TSIGAS P.: Growing squares: Animated
visualization of causal relations. In Proceedings of the 2003
ACM Symposium on Software Visualization (New York, NY,
USA, 2003), SoftVis ’03, ACM, pp. 17–ff. doi:10.1145/
774833.774836. 12

[FAJ91] FRANCIONI J. M., ALBRIGHT L., JACKSON J. A.: De-
bugging parallel programs using sound. SIGPLAN Not. 26, 12
(Dec. 1991), 68–75. doi:10.1145/127695.122765. 12

[FB89] FOWLER R., BELLA I.: The programmer’s guide to Movi-
ola: An interactive execution history browser. Tech. rep., DTIC
Document, 1989. 11, 12

[FT05] FRISHMAN Y., TAL A.: Visualization of mobile object
environments. In Proceedings of the 2005 ACM Symposium on
Software Visualization (New York, NY, USA, 2005), SoftVis ’05,
ACM, pp. 145–154. doi:10.1145/1056018.1056038. 12

[GEK∗95] GU W., EISENHAUER G., KRAEMER E., SCHWAN
K., STASKO J., VETTER J., MALLAVARUPU N.: Falcon: on-
line monitoring and steering of large-scale parallel programs.
In Frontiers of Massively Parallel Computation, 1995. Proceed-
ings. Frontiers ’95., Fifth Symposium on the (1995), pp. 422–429.
doi:10.1109/FMPC.1995.380483. 12

[GKM04] GRAHAM S. L., KESSLER P. B., MCKUSICK M. K.:
gprof: A call graph execution profiler. SIGPLAN Not. 39, 4 (Apr.
2004), 49–57. doi:10.1145/989393.989401. 1, 2

[GN10] GEORGE B., NAGPAL P.: Optimizing Parallel Applica-
tions Using Concurrency Visualizer: A Case Study. Tech. rep.,
2010. 12

[GT89] GRISWOLD R., TOWNSEND G.: The Visualization of
Dynamic Memory Management in the Icon Programming Lan-
guage. Tech. Rep. TR 89-30, Department of Computer Science.
University of Arizona, December 1989. 6, 7

[GWW∗10] GEIMER M., WOLF F., WYLIE B. J. N., ÁBRAHÁM
E., BECKER D., MOHR B.: The Scalasca performance toolset
architecture. Concurr. Comput. : Pract. Exper. 22, 6 (Apr. 2010),
702–719. doi:10.1002/cpe.v22:6. 14

[HC88] HOUGH A. A., CUNY J. E.: Initial experiences with a
pattern-oriented parallel debugger. In Proceedings of the 1988
ACM SIGPLAN and SIGOPS Workshop on Parallel and Dis-
tributed Debugging (New York, NY, USA, 1988), PADD ’88,
ACM, pp. 195–205. doi:10.1145/68210.69234. 11

[HCR01] HAYNES R., CROSSNO P., RUSSELL E.: A visual-
ization tool for analyzing cluster performance data. In Cluster
Computing, 2001. Proceedings. 2001 IEEE International Con-
ference on (2001), pp. 295–302. doi:10.1109/CLUSTR.
2001.959990. 6

[HE91] HEATH M., ETHERIDGE J.: Visualizing the performance
of parallel programs. Software, IEEE 8, 5 (1991), 29–39. doi:
10.1109/52.84214. 4, 6, 11, 12

[ILG∗12] ISAACS K. E., LANDGE A. G., GAMBLIN T., BRE-
MER P.-T., PASCUCCI V., HAMANN B.: Abstract: Explor-
ing performance data with Boxfish. In Proceedings of the
2012 SC Companion: High Performance Computing, Network-
ing Storage and Analysis (Washington, DC, USA, 2012), SCC
’12, IEEE Computer Society, pp. 1380–1381. doi:10.1109/
SC.Companion.2012.202. 4, 6

[Int07] INTEL: Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual - Volume 3B. Intel Corporation, August 2007. 3

[ISC∗12] ILSCHE T., SCHUCHART J., COPE J., KIMPE D.,
JONES T., KNÜPFER A., ISKRA K., ROSS R., NAGEL W. E.,
POOLE S.: Enabling event tracing at leadership-class scale
through i/o forwarding middleware. In Proceedings of the
21st International Symposium on High-Performance Parallel and
Distributed Computing (New York, NY, USA, 2012), HPDC ’12,
ACM, pp. 49–60. doi:10.1145/2287076.2287085. 13

[JSB97] JERDING D. F., STASKO J. T., BALL T.: Visualiz-
ing interactions in program executions. In Proceedings of the
19th International Conference on Software Engineering (New
York, NY, USA, 1997), ICSE ’97, ACM, pp. 360–370. doi:
10.1145/253228.253356. 8, 9

[KG96] KOHL J. A., GEIST G.: The pvm 3.4 tracing facility and
xpvm 1.1. In System Sciences, 1996., Proceedings of the Twenty-
Ninth Hawaii International Conference on, (1996), vol. 1, IEEE,
pp. 290–299. doi:10.1109/HICSS.1996.495474. 11, 12

[KLJ07] KIM Y.-J., LIM J.-S., JUN Y.-K.: Scalable thread
visualization for debugging data races in openmp programs.
In Proceedings of the 2nd International Conference on Ad-
vances in Grid and Pervasive Computing (Berlin, Heidelberg,
2007), GPC’07, Springer-Verlag, pp. 310–321. doi:10.
1007/978-3-540-72360-8_27. 6, 12

[KMLM97] KARAVANIC K. L., MYLLYMAKI J., LIVNY M.,
MILLER B. P.: Integrated visualization of parallel program per-
formance data. Parallel Comput. 23, 1-2 (Apr. 1997), 181–198.
doi:10.1016/S0167-8191(96)00104-4. 12

[KS93] KRAEMER E., STASKO J. T.: The visualization of paral-
lel systems: An overview. J. Parallel Distrib. Comput. 18, 2 (June
1993), 105–117. doi:10.1006/jpdc.1993.1050. 1

[KS98] KRAEMER E., STASKO J. T.: Creating an accurate por-
trayal of concurrent executions. IEEE Concurrency 6, 1 (Jan.
1998), 36–46. doi:10.1109/4434.656778. 10, 11, 12

[KTD13] KARRAN B., TRÃIJMPER J., DÃŰLLNER J.: Sync-
trace: Visual thread-interplay analysis. In Proceedings (elec-
tronic) of the 1st Working Conference on Software Visualiza-
tion (VISSOFT) (2013), IEEE Computer Society, p. 10. doi:
10.1109/VISSOFT.2013.6650534. 8, 11, 12

[KTM97] KOIKE H., TAKADA T., MASUI T.: Visualinda: a
framework for visualizing parallel linda programs. In Visual Lan-
guages, 1997. Proceedings. 1997 IEEE Symposium on (1997),
pp. 174–178. doi:10.1109/VL.1997.626578. 11, 12

[KZLK06] KALE L. V., ZHENG G., LEE C. W., KUMAR S.:
Scaling applications to massively parallel machines using Pro-
jections performance analysis tool. In Future Generation Com-
puter Systems Special Issue on: Large-Scale System Performance

c© The Eurographics Association 2014.

http://dx.doi.org/10.1057/ivs.2009.5
http://dx.doi.org/10.1145/1879211.1879233
http://dx.doi.org/10.1109/VISSOFT.2013.6650535
http://dx.doi.org/10.1002/(SICI)1097-024X(199604)26:4<399::AID-SPE8>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-024X(199604)26:4<399::AID-SPE8>3.0.CO;2-J
http://dx.doi.org/10.1109/VISUAL.1992.235206
http://dx.doi.org/10.1109/VISUAL.1992.235206
http://dx.doi.org/10.1145/774833.774836
http://dx.doi.org/10.1145/774833.774836
http://dx.doi.org/10.1145/127695.122765
http://dx.doi.org/10.1145/1056018.1056038
http://dx.doi.org/10.1109/FMPC.1995.380483
http://dx.doi.org/10.1145/989393.989401
http://dx.doi.org/10.1002/cpe.v22:6
http://dx.doi.org/10.1145/68210.69234
http://dx.doi.org/10.1109/CLUSTR.2001.959990
http://dx.doi.org/10.1109/CLUSTR.2001.959990
http://dx.doi.org/10.1109/52.84214
http://dx.doi.org/10.1109/52.84214
http://dx.doi.org/10.1109/SC.Companion.2012.202
http://dx.doi.org/10.1109/SC.Companion.2012.202
http://dx.doi.org/10.1145/2287076.2287085
http://dx.doi.org/10.1145/253228.253356
http://dx.doi.org/10.1145/253228.253356
http://dx.doi.org/10.1109/HICSS.1996.495474
http://dx.doi.org/10.1007/978-3-540-72360-8_27
http://dx.doi.org/10.1007/978-3-540-72360-8_27
http://dx.doi.org/10.1016/S0167-8191(96)00104-4
http://dx.doi.org/10.1006/jpdc.1993.1050
http://dx.doi.org/10.1109/4434.656778
http://dx.doi.org/10.1109/VISSOFT.2013.6650534
http://dx.doi.org/10.1109/VISSOFT.2013.6650534
http://dx.doi.org/10.1109/VL.1997.626578

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Modeling and Analysis (February 2006), vol. 22, pp. 347–358.
doi:10.1016/j.future.2004.11.020. 11, 12, 14

[Lam78] LAMPORT L.: Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (July 1978), 558–
565. doi:10.1145/359545.359563. 10

[LDB∗99] LIAO S.-W., DIWAN A., BOSCH JR. R. P., GHU-
LOUM A., LAM M. S.: Suif explorer: An interactive and in-
terprocedural parallelizer. In Proceedings of the Seventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (New York, NY, USA, 1999), PPoPP ’99, ACM,
pp. 37–48. doi:10.1145/301104.301108. 9

[LLB∗12] LANDGE A., LEVINE J., BHATELE A., ISAACS K.,
GAMBLIN T., SCHULZ M., LANGER S., BREMER P.-T., PAS-
CUCCI V.: Visualizing network traffic to understand the perfor-
mance of massively parallel simulations. Visualization and Com-
puter Graphics, IEEE Transactions on 18, 12 (2012), 2467–2476.
doi:10.1109/TVCG.2012.286. 4, 6

[LMC13] LIU X., MELLOR-CRUMMEY J.: A data-centric pro-
filer for parallel programs. In Proceedings of the International
Conference on High Performance Computing, Networking, Stor-
age and Analysis (New York, NY, USA, 2013), SC ’13, ACM,
pp. 28:1–28:12. doi:10.1145/2503210.2503297. 14

[LMCF90] LEBLANC T. J., MELLOR-CRUMMEY J. M.,
FOWLER R. J.: Analyzing parallel program executions using
multiple views. J. Parallel Distrib. Comput. 9, 2 (June 1990),
203–217. doi:10.1016/0743-7315(90)90046-R. 11,
12

[LMK08] LEE C. W., MENDES C., KALÉ L. V.: Towards Scal-
able Performance Analysis and Visualization through Data Re-
duction. In 13th International Workshop on High-Level Paral-
lel Programming Models and Supportive Environments (Miami,
Florida, USA, April 2008). 14

[LSV∗89] LEHR T., SEGALL Z., VRSALOVIC D. F., CAPLAN
E., CHUNG A. L., FINEMAN C. E.: Visualizing performance
debugging. Computer 22, 10 (Oct. 1989), 38–51. doi:10.
1109/2.42013. 10, 12

[LTOB10] LIN S., TAÏANI F., ORMEROD T. C., BALL L. J.:
Towards anomaly comprehension: Using structural compression
to navigate profiling call-trees. In Proceedings of the 5th In-
ternational Symposium on Software Visualization (New York,
NY, USA, 2010), SOFTVIS ’10, ACM, pp. 103–112. doi:
10.1145/1879211.1879228. 9

[MBDH99] MUCCI P. J., BROWNE S., DEANE C., HO G.: PAPI:
A portable interface to hardware performance counters. In Proc.
Department of Defense HPCMP User Group Conference (June
1999). 1, 2

[MGM09] MUELDER C., GYGI F., MA K.-L.: Visual analysis of
inter-process communication for large-scale parallel computing.
IEEE Transactions on Visualization and Computer Graphics 15,
6 (2009), 1129–1136. doi:10.1109/TVCG.2009.196. 10,
12

[MHJ91] MALONY A., HAMMERSLAG D., JABLONOWSKI D.:
Traceview: a trace visualization tool. Software, IEEE 8, 5 (1991),
19–28. doi:10.1109/52.84213. 8

[MMC02] MALETIC J., MARCUS A., COLLARD M.: A task ori-
ented view of software visualization. In Visualizing Software
for Understanding and Analysis, 2002. Proceedings. First In-
ternational Workshop on (2002), pp. 32–40. doi:10.1109/
VISSOF.2002.1019792. 1

[MSM∗11] MUELDER C., SIGOVAN C., MA K.-L., COPE J.,
LANG S., ISKRA K., BECKMAN P., ROSS R.: Visual analysis
of i/o system behavior for high-end computing. In Proceedings

of the Third International Workshop on Large-scale System and
Application Performance (New York, NY, USA, 2011), LSAP
’11, ACM, pp. 19–26. doi:10.1145/1996029.1996036.
6, 8

[MT07] MORETA S., TELEA A.: Visualizing dynamic mem-
ory allocations. In Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007. 4th IEEE International Work-
shop on (2007), pp. 31–38. doi:10.1109/VISSOF.2007.
4290697. 6, 7

[MTSM03] MU T., TAO J., SCHULZ M., MCKEE S. A.: In-
teractive locality optimization on numa architectures. In Pro-
ceedings of the 2003 ACM Symposium on Software Visualiza-
tion (New York, NY, USA, 2003), SoftVis ’03, ACM, pp. 133–ff.
doi:10.1145/774833.774853. 7

[MW03] MOHR B., WOLF F.: Kojak - a tool set for automatic
performance analysis of parallel programs. In Euro-Par 2003
Parallel Processing, Kosch H., BÃűszÃűrmÃl’nyi L., Hellwag-
ner H., (Eds.), vol. 2790 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2003, pp. 1301–1304. doi:
10.1007/978-3-540-45209-6_177. 9

[NAW∗96] NAGEL W. E., ARNOLD A., WEBER M., HOPPE
H. C., SOLCHENBACH K.: VAMPIR: Visualization and anal-
ysis of MPI resources. Supercomputer 12, 1 (1996), 69–80. 2,
10, 12

[NS07] NETHERCOTE N., SEWARD J.: Valgrind: A framework
for heavyweight dynamic binary instrumentation. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (New York, NY, USA, 2007),
PLDI ’07, ACM, pp. 89–100. doi:10.1145/1250734.
1250746. 1

[PLCG95] PILLET V., LABARTA J., CORTES T., GIRONA S.:
Paraver: A tool to visualize and analyze parallel code. In Pro-
ceedings of WoTUG-18: Transputer and occam Developments
(1995), vol. 44, pp. 17–31. 11, 12

[Rei90] REILLY M.: Presentation tools for performance visu-
alization: the m31 instrumentation experience. In System Sci-
ences, 1990., Proceedings of the Twenty-Third Annual Hawaii
International Conference on (1990), vol. i, pp. 307–313 vol.1.
doi:10.1109/HICSS.1990.205129. 9, 10, 12

[Rei05] REINDERS J.: VTune Performance Analyzer Essentials:
Measurement and Tuning Techniques for Software Developers.
Engineer to Engineer Series. Intel Press, 2005. 1, 2, 6

[Ros13] ROSEN P.: A visual approach to investigating shared and
global memory behavior of CUDA kernels. In Computer Graph-
ics Forum (EuroVis) (2013), vol. 32. doi:10.1111/cgf.
12103. 7

[RR99] RENIERIS M., REISS S. P.: ALMOST: Exploring pro-
gram traces. In 1999 Workshop on New Paradigms in Infor-
mation Visualization adn Manipulation (199), ACM, pp. 70–77.
doi:10.1145/331770.331788. 8

[RRA∗93] REED D. A., ROTH P., AYDT R. A., SHIELDS K.,
TAVERA L., NOE R., SCHWARTZ B.: Scalable performance
analysis: The pablo performance analysis environment. In Scal-
able Parallel Libraries Conference, 1993., Proceedings of the
(1993), IEEE, pp. 104–113. doi:10.1109/SPLC.1993.
365577. 12

[RZ05] ROBERTS J., ZILLES C.: Tracevis: An execution trace
visualization tool. In MoBS ’05 (2005). 8, 9

[SG93] SARUKKAI S. R., GANNON D.: SIEVE: A performance
debugging environment for parallel programs. J. Parallel Distrib.
Comput. 18, 2 (June 1993), 147–168. doi:10.1006/jpdc.
1993.1053. 9, 10, 12

c© The Eurographics Association 2014.

http://dx.doi.org/10.1016/j.future.2004.11.020
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/301104.301108
http://dx.doi.org/10.1109/TVCG.2012.286
http://dx.doi.org/10.1145/2503210.2503297
http://dx.doi.org/10.1016/0743-7315(90)90046-R
http://dx.doi.org/10.1109/2.42013
http://dx.doi.org/10.1109/2.42013
http://dx.doi.org/10.1145/1879211.1879228
http://dx.doi.org/10.1145/1879211.1879228
http://dx.doi.org/10.1109/TVCG.2009.196
http://dx.doi.org/10.1109/52.84213
http://dx.doi.org/10.1109/VISSOF.2002.1019792
http://dx.doi.org/10.1109/VISSOF.2002.1019792
http://dx.doi.org/10.1145/1996029.1996036
http://dx.doi.org/10.1109/VISSOF.2007.4290697
http://dx.doi.org/10.1109/VISSOF.2007.4290697
http://dx.doi.org/10.1145/774833.774853
http://dx.doi.org/10.1007/978-3-540-45209-6_177
http://dx.doi.org/10.1007/978-3-540-45209-6_177
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1109/HICSS.1990.205129
http://dx.doi.org/10.1111/cgf.12103
http://dx.doi.org/10.1111/cgf.12103
http://dx.doi.org/10.1145/331770.331788
http://dx.doi.org/10.1109/SPLC.1993.365577
http://dx.doi.org/10.1109/SPLC.1993.365577
http://dx.doi.org/10.1006/jpdc.1993.1053
http://dx.doi.org/10.1006/jpdc.1993.1053

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

[Sha90] SHARMA S.: Real-time visualization of concurrent pro-
cesses. Springer, 1990. doi:10.1007/3-540-53065-7_
160. 10, 12

[SHN10] SCHNORR L. M., HUARD G., NAVAUX P. O.: Triva:
Interactive 3d visualization for performance analysis of paral-
lel applications. Future Generation Computer Systems 26, 3
(2010), 348 – 358. doi:http://dx.doi.org/10.1016/
j.future.2009.10.006. 11, 12

[SK93] STASKO J. T., KRAEMER E.: A methodology for build-
ing application-specific visualizations of parallel programs. J.
Parallel Distrib. Comput. 18, 2 (June 1993), 258–264. doi:
10.1006/jpdc.1993.1062. 12

[SKV03] SCHAUBSCHLÄGER C., KRANZLMÜLLER D., VOLK-
ERT J.: Event-based program analysis with DeWiz. In Proceed-
ings of the Fifth International Workshop on Automated Debug-
ging AADEBUG2003 (2003). 11, 12

[SLB∗11] SCHULZ M., LEVINE J., BREMER P.-T., GAMBLIN
T., PASCUCCI V.: Interpreting performance data across intu-
itive domains. In Parallel Processing (ICPP), 2011 International
Conference on (2011), pp. 206–215. doi:10.1109/ICPP.
2011.60. 6, 12, 13

[SM06] SHENDE S., MALONY A. D.: The TAU parallel perfor-
mance system. International Journal of High Performance Com-
puting Applications 20, 2 (2006), 287–311. doi:10.1177/
1094342006064482. 1, 2, 9

[SML∗12] SPEAR W., MALONY A. D., LEE C. W., BIERS-
DORFF S., SHENDE S.: An approach to creating performance
visualizations in a parallel profile analysis tool. In Proceedings of
the 2011 International Conference on Parallel Processing - Vol-
ume 2 (Berlin, Heidelberg, 2012), Euro-Par ’11, Springer-Verlag,
pp. 156–165. doi:10.1007/978-3-642-29740-3_19.
12

[SMM∗13a] SIGOVAN C., MUELDER C., MA K.-L., COPE
J., ISKRA K., ROSS R.: A visual network analysis method
for large-scale parallel i/o systems. Parallel and Dis-
tributed Processing Symposium, International 0 (2013), 308–
319. doi:http://doi.ieeecomputersociety.org/
10.1109/IPDPS.2013.96. 14

[SMM13b] SIGOVAN C., MUELDER C. W., MA K.-L.: Visu-
alizing large-scale parallel communication traces using a particle
animation technique. Computer Graphics Forum 32, 3pt2 (2013),
141–150. doi:10.1111/cgf.12101. 11

[SRWS99] SHAFFER E., REED D., WHITMORE S., SCHAEFFER
B.: Virtue: performance visualization of parallel and distributed
applications. Computer 32, 12 (1999), 44–51. doi:10.1109/
2.809250. 11, 12

[SSMG13] SAMBASIVAN R., SHAFER I., MAZUREK M.,
GANGER G.: Visualizing request-flow comparison to aid perfor-
mance diagnosis in distributed systems. Visualization and Com-
puter Graphics, IEEE Transactions on 19, 12 (2013), 2466–2475.
doi:10.1109/TVCG.2013.233. 8, 14

[Sto88] STONE J. M.: A graphical representation of concur-
rent processes. In Proceedings of the 1988 ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed Debugging
(New York, NY, USA, 1988), PADD ’88, ACM, pp. 226–235.
doi:10.1145/68210.69237. 12

[TBD10] TRÜMPER J., BOHNET J., DÖLLNER J.: Understand-
ing complex multithreaded software systems by using trace vi-
sualization. In Proceedings of the 5th International Symposium
on Software Visualization (New York, NY, USA, 2010), SOFT-
VIS ’10, ACM, pp. 133–142. doi:10.1145/1879211.
1879232. 6, 8, 10, 12

[TKS01] TAO J., KARL W., SCHULZ M.: Visualizing the mem-
ory access behavior of shared memory applications on numa ar-
chitectures. In In Proceedings of the 2001 International Confer-
ence on Computational Science (ICCS), volume 2074 of LNCS
(2001), pp. 861–870. doi:10.1007/3-540-45718-6_91.
14

[TM05] TORY M., MOLLER T.: Evaluating visualizations: Do
expert reviews work? IEEE Comput. Graph. Appl. 25, 5 (Sept.
2005), 8–11. doi:10.1109/MCG.2005.102. 14

[TMCF∗11] TALLENT N. R., MELLOR-CRUMMEY J., FRANCO
M., LANDRUM R., ADHIANTO L.: Scalable fine-grained call
path tracing. In Proceedings of the International Conference on
Supercomputing (New York, NY, USA, 2011), ICS ’11, ACM,
pp. 63–74. doi:10.1145/1995896.1995908. 13, 14

[TSS98] TOPOL B., STASKO J. T., SUNDERAM V.: Pvanim:
a tool for visualization in network computing environments.
Concurrency: Practice and Experience 10, 14 (1998), 1197–
1222. doi:10.1002/(SICI)1096-9128(19981210)
10:14<1197::AID-CPE364>3.0.CO;2-O. 11, 12

[VMa13] Manual - Vampir 8.2. http:www.vampir.eu, Novem-
ber 2013. 10, 12, 14

[WG11] WYLIE B. J. N., GEIMER M.: Large-scale performance
analysis of PFLOTRAN with Scalasca. In Proc. of the 53rd Cray
User Group meeting, Fairbanks, AK, USA (May 2011), Cray
User Group Inc. 9, 12

[WK00] WANG Y., KUNZ T.: Visualizing mobile agent exe-
cutions. In Proceedings of the Second International Workshop
on Mobile Agents for Telecommunication Applications (Lon-
don, UK, UK, 2000), MATA ’00, Springer-Verlag, pp. 103–114.
doi:10.1007/3-540-45391-1_8. 11, 12

[WKT04] WEIDENDORFER J., KOWARSCHIK M., TRINITIS C.:
A tool suite for simulation based analysis of memory access be-
havior. In Computational Science - ICCS 2004, Bubak M., Al-
bada G., Sloot P., Dongarra J., (Eds.), vol. 3038 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004, pp. 440–
447. doi:10.1007/978-3-540-24688-6_58. 9

[WMfAM04] WOLF F., MOHR B., FÜR ANGEWANDTE MATH-
EMATIK Z.: EPILOG Binary Trace-data Format. FZJ-ZAM,
2004. 2

[WT10] WHEELER K. B., THAIN D.: Visualizing massively
multithreaded applications with threadscope. Concurr. Comput.
: Pract. Exper. 22, 1 (Jan. 2010), 45–67. doi:10.1002/cpe.
v22:1. 11, 12

[WWF∗13] WALLER J., WULF C., FITTKAU F., DÖHRING P.,
HASSELBRING W.: Synchrovis: 3d visualization of monitor-
ing traces in the city metaphor for analyzing concurrency. In
1st IEEE International Working Conference on Software Visual-
ization (VISSOFT 2013) (September 2013). doi:10.1109/
VISSOFT.2013.6650520. 9, 11

[WYH10] WU Y., YAP R. H., HALIM F.: Visualizing windows
system traces. In Proceedings of the 5th International Symposium
on Software Visualization (New York, NY, USA, 2010), SOFT-
VIS ’10, ACM, pp. 123–132. doi:10.1145/1879211.
1879231. 8, 10, 12, 14

[YI03] YAMAGUCHI Y., ITOH T.: Visualization of distributed
processes using "data jewelry box" algorithm. In Computer
Graphics International, 2003. Proceedings (2003), pp. 162–169.
doi:10.1109/CGI.2003.1214461. 12

[YSM95] YAN J., SARUKKAI S., MEHRA P.: Performance
measurement, visualization and modeling of parallel and dis-
tributed programs using the aims toolkit. Software: Practice
and Experience 25, 4 (1995), 429–461. doi:10.1002/spe.
4380250406. 11, 12

c© The Eurographics Association 2014.

http://dx.doi.org/10.1007/3-540-53065-7_160
http://dx.doi.org/10.1007/3-540-53065-7_160
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2009.10.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2009.10.006
http://dx.doi.org/10.1006/jpdc.1993.1062
http://dx.doi.org/10.1006/jpdc.1993.1062
http://dx.doi.org/10.1109/ICPP.2011.60
http://dx.doi.org/10.1109/ICPP.2011.60
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1007/978-3-642-29740-3_19
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.96
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.96
http://dx.doi.org/10.1111/cgf.12101
http://dx.doi.org/10.1109/2.809250
http://dx.doi.org/10.1109/2.809250
http://dx.doi.org/10.1109/TVCG.2013.233
http://dx.doi.org/10.1145/68210.69237
http://dx.doi.org/10.1145/1879211.1879232
http://dx.doi.org/10.1145/1879211.1879232
http://dx.doi.org/10.1007/3-540-45718-6_91
http://dx.doi.org/10.1109/MCG.2005.102
http://dx.doi.org/10.1145/1995896.1995908
http://dx.doi.org/10.1002/(SICI)1096-9128(19981210)10:14<1197::AID-CPE364>3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1096-9128(19981210)10:14<1197::AID-CPE364>3.0.CO;2-O
http:www.vampir.eu
http://dx.doi.org/10.1007/3-540-45391-1_8
http://dx.doi.org/10.1007/978-3-540-24688-6_58
http://dx.doi.org/10.1002/cpe.v22:1
http://dx.doi.org/10.1002/cpe.v22:1
http://dx.doi.org/10.1109/VISSOFT.2013.6650520
http://dx.doi.org/10.1109/VISSOFT.2013.6650520
http://dx.doi.org/10.1145/1879211.1879231
http://dx.doi.org/10.1145/1879211.1879231
http://dx.doi.org/10.1109/CGI.2003.1214461
http://dx.doi.org/10.1002/spe.4380250406
http://dx.doi.org/10.1002/spe.4380250406

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

[ZLGS99] ZAKI O., LUSK E., GROPP W., SWIDER D.: Toward
scalable performance visualization with Jumpshot. High Per-
formance Computing Applications 13, 2 (Fall 1999), 277–288.
doi:10.1109/ipdps.2008.4536187. 11, 12

[ZR91] ZERNIK D., RUDOLPH L.: Animating work and time
for debugging parallel programs foundation and experience. In
Proceedings of the 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging (New York, NY, USA, 1991), PADD ’91,
ACM, pp. 46–56. doi:10.1145/122759.122763. 12

[ZSC03] ZHOU C., SUMMERS K. L., CAUDELL T. P.: Graph
visualization for the analysis of the structure and dynamics of
extreme-scale supercomputers. In Proceedings of the 2003 ACM
Symposium on Software Visualization (New York, NY, USA,
2003), SoftVis ’03, ACM, pp. 143–149. doi:10.1145/
774833.774854. 6

[ZSM92] ZERNIK D., SNIR M., MALKI D.: Using visualization
tools to understand concurrency. Software, IEEE 9, 3 (1992),
87–92. doi:10.1109/52.136185. 12

Biography

Katherine E. Isaacs is a third year computer science Ph.D.
student at the University of California, Davis researching in-
formation visualization techniques for performance analysis.
In 2012 she was awarded a Department of Energy Office of
Science Graduate Fellowship (DOE SCGF). She completed
a B.S. in computer science and a B.A. in mathematics at San
José State University and a B.S. in physics at the California
Institute of Technology.

Alfredo Giménez is a third year PhD student at the Uni-
versity of California at Davis. His research focus is in in-
strumentation and information visualization for performance
analysis on HPC systems. He received a B.S. in Computer
Science at the University of California at Davis in 2010
and worked for 2 years developing performance optimiza-
tion tools for graphics hardware at Intel Corporation.

Ilir Jusufi is a Postdoctoral Scholar at the University of
California, Davis. His research focuses on visualization of
performance analysis data for HPC. He received a B.S. in
Computer Science at the South East European University in
Macedonia and a M.S. in Computer Science at the Växjö
university in Sweden. He earned his Ph.D. degree at the Lin-
naeus University in Sweden focusing on the visualization
and interaction techniques of multivariate networks.

Todd Gamblin is a computer scientist in the Center for
Applied Scientific Computing at Lawrence Livermore Na-
tional Laboratory. His research focuses mainly on scalable
algorithms for measuring, analyzing, and visualizing per-
formance data from massively parallel applications. He is
also interested in fault tolerance, resilience, MPI, and par-
allel programming models. Todd has been at LLNL since
2008.

Todd works closely with researchers in CASC and with
staff in the Development Environment Group in Livermore
Computing. He is the team leader for the Performance Anal-
ysis and Visualization at Exascale (PAVE) project, and he

also works on the Exascale Computing Technologies LDRD
project, the SciDAC Sustained Performance, Energy, and
Resilience (SUPER) project, and many other ASC projects
at LLNL.

Todd received the Ph.D. and M.S. degrees in Computer
Science from the University of North Carolina at Chapel
Hill in 2009 and 2005. He received his B.A. in Computer
Science and Japanese from Williams College in 2002. He
has also worked as a software developer in Tokyo and held
graduate research internships at the University of Tokyo and
IBM Research.

Abhinav Bhatele is a computer scientist in the Center for
Applied Scientific Computing at Lawrence Livermore Na-
tional Laboratory. His interests lie in performance optimiza-
tions through analysis, visualization and tuning and devel-
oping algorithms for high-end parallel systems. His thesis
was on topology aware task mapping and distributed load
balancing for parallel applications.

Abhinav received a B. Tech. degree in Computer Sci-
ence and Engineering from I.I.T. Kanpur, India in May 2005
and M.S. and Ph.D. degrees in Computer Science from the
University of Illinois at Urbana-Champaign in 2007 and
2010 respectively. Abhinav was an ACM/IEEE-CS George
Michael Memorial HPC Fellow in 2009. He has received
several awards for his dissertation work including the David
J. Kuck Outstanding MS Thesis Award in 2009, a Distin-
guished Paper Award at Euro-Par 2009 and the David J.
Kuck Outstanding PhD Thesis Award in 2011. Recently, a
paper that he co-authored with LLNL and external collabo-
rators was selected for a best paper award at IPDPS in 2013.

Martin Schulz is a Computer Scientist at the Center for
Applied Scientific Computing (CASC) at Lawrence Liver-
more National Laboratory (LLNL). He earned his Doctor-
ate in Computer Science in 2001 from the Technische Uni-
versitÃd’t MÃijnchen (Munich, Germany) and also holds a
Master of Science in Computer Science from the University
of Illinois at Urbana Champaign. He has published over 150
peer-reviewed papers. He is the PI for the Office of Science
X-Stack project "Performance Insights for Programmers and
Exascale Runtimes" (PIPER) and for the ASC/CCE project
on Open|SpeedShop. Further, he is the chair of the MPI fo-
rum, the standardization body for the Message Passing Inter-
face, and is involved in the DOE/Office of Science Exascale
Projects CESAR ExMatEx, and ARGO. Martin’s research
interests include parallel and distributed architectures and
applications; performance monitoring, modeling and anal-
ysis; memory system optimization; parallel programming
paradigms; tool support for parallel programming; power
efficiency for parallel systems; optimizing parallel and dis-
tributed I/O; and fault tolerance at the application and system
level. In his position at LLNL he especially focuses on the
issue of scalability for parallel applications, code correctness
tools, and parallel performance analyzers as well as scalable
tool infrastructures to support these efforts.

c© The Eurographics Association 2014.

http://dx.doi.org/10.1109/ipdps.2008.4536187
http://dx.doi.org/10.1145/122759.122763
http://dx.doi.org/10.1145/774833.774854
http://dx.doi.org/10.1145/774833.774854
http://dx.doi.org/10.1109/52.136185

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, & P.-T. Bremer / State of the Art of Performance Visualization

Bernd Hamann is a professor of computer science at
the University of California, Davis. He studied mathematics
and computer science at the Technical University of Braun-
schweig, Germany, and received a Ph.D. in computer science
from Arizona State University in 1991. His main teaching
and research interests are data visualization, data analysis
and geometric modeling.

Peer-Timo Bremer is a member of technical staff and
project leader at the Center for Applied Scientific Comput-
ing (CASC) at the Lawrence Livermore National Laboratory
(LLNL) and Associated Director for Research at the Center
for Extreme Data Management, Analysis, and Visualization
at the University of Utah. His research interests include large
scale data analysis, performance analysis and visualization
and he recently co-organized a Dagstuhl Perspectives work-
shop on integrating performance analysis and visualization.
Prior to his tenure at CASC, he was a postdoctoral research
associate at the University of Illinois, Urbana-Champaign.
Peer-Timo earned a Ph.D. in Computer science at the Uni-
versity of California, Davis in 2004 and a Diploma in Math-
ematics and Computer Science from the Leipniz University
in Hannover, Germany in 2000. He is a member of the IEEE
Computer Society and ACM.

c© The Eurographics Association 2014.

