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ABSTRACT
Asynchrony and non-determinism in Charm++ programs present a
significant challenge in analyzing their event traces. We present a
new framework to organize event traces of parallel programs writ-
ten in Charm++. Our reorganization allows one to more easily
explore and analyze such traces by providing context through log-
ical structure. We describe several heuristics to compensate for
missing dependencies between events that currently cannot be easily
recorded. We introduce a new task ordering that recovers logical
structure from the non-deterministic execution order. Using the
logical structure, we define several metrics to help guide developers
to performance problems. We demonstrate our approach through
two proxy applications written in Charm++. Finally, we discuss
the applicability of this framework to other task-based runtimes and
provide guidelines for tracing to support this form of analysis.
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1. MOTIVATION
Task-based programming models and their associated runtimes

are receiving renewed attention because they can exploit fine-grained
parallelism and heterogeneous hardware without overburdening de-
velopers. Examples of such runtimes include Charm++ [14, 15], the
Open Community Runtime [2], Legion [4], OmpSs [7], and Cilk [9].
All of these approaches are based on encapsulating data and/or
computation in independent tasks and scheduling them dynamically
based on their dependency graph. This provides significant benefits
in terms of extracting concurrency, tolerating operating system (OS)
jitter, and utilizing heterogeneous resources such as accelerators.
Unfortunately, it also makes understanding the behavior of applica-
tions written in these runtimes more challenging than those written
in process-centric models such as MPI. The overdecomposition into
tasks increases the overall complexity and the scheduling of tasks
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on processing elements is hard to track. Furthermore, the runtime
adds non-trivial processing often hidden from the users.

Task-based runtimes (TBRs) result in fine-grained program ex-
ecution based on distinct tasks and explicit dependencies. Tracing
provides detailed records of all events of interest, e.g., function
calls, message sends or receives, or in the case of TBRs – tasks.
Analysts can study the exact sequence of events from an execu-
tion. However, as applications become more complex and grow
in numbers of processors, tasks, and events, understanding these
traces becomes challenging. It is hard to relate the observed order of
events to the original algorithms. This causes a disconnect between
the developers’ mental picture of an application and the information
encoded in the trace. Recently, Isaacs et al. showed that a suitable
reordering of events in MPI applications can capture the missing
context and is often better aligned with the developers’ intended log-
ical structure [13]. This new order leads to more advanced analysis
techniques such as a definition of lateness for events. Additionally,
it enables the reorganization of traditional parallel timelines into
more intuitive visualizations [12] as shown in Figure 1.

Figure 1: Logical structure (top) and physical time (bottom) in
a 9-process NAS BT [3] trace.

Task-based models, however, present new challenges in deter-
mining this developer-intended organization from recorded traces
and require substantially new techniques because (1) the ratio of
tasks to processors is no longer 1:1 per phase; (2) logically linked
tasks may now migrate across processors; (3) the non-deterministic
nature of scheduling work does not necessarily permit a happened-
before relationship between events on those processors and may
obscure patterns of dependencies; (4) some dependencies between
events may be internal to the programming models’ runtime and
not available in the recorded trace data; and (5) traditional metrics
assume tasks are statically scheduled to hardware units and use the
implicit dependencies to compute metrics like lateness. In TBRs
these dependencies are no longer valid as tasks could be reordered
and are thus not useful to determine execution inefficiencies.

We address some of the challenges mentioned above and present
a novel approach to reorder and analyze trace data from programs
running on top of Charm++, a popular asynchronous, message-
driven TBR. We analyze dependencies in Charm++ event traces and
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order events where some dependencies may not be recorded. The
new algorithm addresses non-deterministic behavior by aggressively
reordering events based on an idealized forward replay within each
phase. This reordering approach results in an improved ordering for
message-passing programs as well. We define new metrics using
our computed ordering, such as differential duration and imbalance
to capture information about execution performance. Our major
contributions are:

• An approach to ordering events in traces of Charm++ applica-
tions that emphasizes logical structure familiar to developers;
• An algorithm for reordering operations in time, applicable to

several programming models;
• Metrics calculated over the new event organization to aid in

the performance analysis of these traces;
• Case studies demonstrating that our algorithm results in mean-

ingful trace organization.

We modify the tracing capabilities of Charm++ to record the neces-
sary data and apply our new algorithm. Throughout our explanation,
we use Jacobi 2D, a simple Charm++ program that computes heat
distribution via Jacobi iteration. We demonstrate the ability to find
structure and highlight events of interest in two proxy applications,
LULESH [1] and LASSEN [22]. Finally, we discuss how our algo-
rithm applies to other TBRs.

2. TASK-BASED RUNTIME SYSTEMS
The terms task and process both denote independent units of

execution. Tasks are execution units that may have a lifetime shorter
than that of the entire program, can share processors, and may be
migrated between processors. In contrast, we assume a process
exists for the entire program execution, has exclusive use of its own
processor, and does not migrate.

A task-based programming model is an execution model of paral-
lel computation where the fundamental unit of execution is a task,
which is scheduled based on its dependencies on other tasks. A
task-based runtime (TBR) system manages the creation, processor
assignment, communication, and migration of tasks. The runtime
may also implement advanced constructs in the task-based model,
such as load balancing and collective communication. An advantage
of TBRs is that the units of execution are finer-grained than the
processes of traditional models. Consequently, there are typically
more tasks than processors. This grants the runtime the flexibility to
migrate work in order to use the available resources more efficiently.
This can lead to better performance as well as tolerance to OS jit-
ter and hardware faults without requiring developers to write load
balancing or checkpointing schemes.
Tracing Dependencies and Developer Intent. A central benefit to
recording trace data rather than aggregated profiles is the ability to
track dependencies. There are generally three types of dependencies:
(1) control dependencies determine what code to run next, which
can manifest explicitly through messages, or implicitly through
shared memory or the ordering of observed events within a task;
(2) data dependencies may be tied to explicit control dependencies
(e.g., a message carrying both data and directives for control flow) or
manifest independently (e.g., a task waiting on a message carrying
only data); and (3) resource dependencies where a task requires a
shared resource such as a processor or semaphore.

The dependencies described above are essential in determining
meaningful orderings of events in a trace. As our logical structure
is meant to evoke the developers’ intended organization, we are
interested in the control dependencies. In process-centric message-
passing programs, control dependencies are explicitly bundled with

messages and largely guaranteed through the ordering of events
in each process. While task-based models may preserve the ex-
plicit manifestations of control dependencies, they can make the
implicit dependencies more difficult to infer and introduce resource
dependencies as multiple tasks can require the same processor.

Programs are generally written to perform some computation
on a domain (e.g., physical space or matrices). Developers must
decompose this domain to compute on it in parallel. They must
also manage relationships among the pieces or sub-domains. There-
fore, data dependencies between the sub-domains are central to
the developers’ organization and thus logical structure. In process-
based models, these data dependencies are often implicit as each
sub-domain ‘lives’ on a process. For TBRs, we use data dependen-
cies to group the tasks logically – transforming process timelines to
sub-domain timelines.

2.1 The Charm++ Runtime System
The Charm++ programming model and runtime system repre-

sent a specific flavor of TBRs and embody the principles of over-
decomposition, adaptive overlap of computation and communica-
tion, and asynchronous message-driven scheduling and execution of
tasks [14, 15]. In Charm++, a chare is a C++ object that is promoted
to a parallel object that can be migrated between processors. Chares
are responsible for encapsulating data, performing tasks, or both.
Chares can either be associated with the application-level code or
the Charm++ runtime. For our purposes, we group application-level
tasks by their parent chares, but group all runtime tasks by their
parent process. The application-level grouping observes the data
dependencies between tasks as encapsulated by the chare.

Tasks are defined by entry methods of a chare. These entry meth-
ods are scheduled for execution via remote method invocations,
whose parameters are marshalled and translated into messages by
the runtime. The runtime routes each message to the processor
where the corresponding chare (and hence the destination task) lives.
Per-processor queues of these messages are maintained by the run-
time as well. A chare is awakened when the runtime scheduler
dequeues its corresponding message and the task gets scheduled.
Entry methods or tasks are guaranteed to be executed without inter-
ruption. When the method completes on a processor, the runtime
selects the next message from that processor’s queue, thereby awak-
ening the message’s associated chare and method to begin execution.
Therefore, control dependencies between tasks are explicitly bun-
dled with these messages sent between chares.

Chares can be grouped into indexed collections called chare
arrays over which messages and other operations can be executed.
For example, one chare can invoke an entry method on every chare
in an array through a single call (similar to a broadcast operation in
MPI).
Structured Dagger. Structured Dagger (SDAG) is an alternative
style of specifying control dependencies in Charm++ programs.
Developers can specify the dependencies between blocks of C++
code that are denoted with the serial keyword. Each serial
is treated as an entry method. The serial executes when the
dependencies specified by the developer have been met. A serial
can be dependent on the C++ control flow in the SDAG code or on
the arrival of specific messages by using a when clause, e.g., when
entry_method() serial { /* do something */ }.

We must infer some happened-before relationships since SDAG
code is implemented by the runtime and not directly traced. The
Charm++ compiler creates generic entry methods for each serial
code section. Each such method is named in a standard fashion
which includes a number related to its parsing order. Therefore,
serial methods close in numbering may be close in control flow



order. For each chare, if we observe an event of serial n followed
by an event of serial n + 1 in true time, we infer that the first
event happened-before the second. The serial following a when
clause is guaranteed to occur immediately after the dependencies
specified by that when clause have been fulfilled. If we find an
entry method that occurs right before a serial, we absorb it into
that serial’s entry method for our ordering algorithm.
Tracing Framework in Charm++. The Charm++ runtime comes
equipped with a tracing framework that can record events for appli-
cation chares. The framework records the begin and end times of
each entry method executed on each process as well as messaging
events. A visualization tool called Projections can read these traces
and produce a process timeline visualization [16, 21, 20].

3. ORDERING TRACE EVENTS
We use the term logical structure to denote an exact ordering

of events reflecting patterns of parallel dependency behavior as de-
signed by the application’s developers. Generally, programming
such applications requires breaking the problem into smaller pieces,
or phases, some of which require parallel interaction. The logical
structure separates these phases which may be interleaved in phys-
ical time. Similarly, within each phase, the events are ordered by
their dependencies into discrete logical steps rather than their true
physical time order and displacement. This matches how the events
were programmed: with logical ordering rather than known timing
information guiding the design.

Our ordering algorithm has two main stages: phase-finding and
ordering. In the phase-finding stage (Section 3.1), we partition
all of the events into phases. We begin with very small partitions
and the relationships between them. These form a directed acyclic
graph (DAG). We successively merge smaller partitions into larger
ones. The partitions at the end of this stage are our phases and the
dependencies among their tasks form a DAG of phases.

In the ordering stage (Section 3.2), we consider each previously
computed phase individually. First, we determine an order of the
events for each chare in the phase. Then, we use that order and the
relationships of events associated with different chares to determine
a phase-wide order. In this order, each event is assigned a local
logical step. Finally, we use the ordering implied by the phase DAG
to offset the local steps into global ones. This completes our logical
structure as each event is assigned an exact position in logical time.

3.1 Partitioning into Dependency Phases
We begin by partitioning events into fine-grained phases. These

phases should capture related interactions among chares. To find
these phases, we begin with the smallest partitions that must belong
in the same phase and any relationships among those partitions. We
consider the partitions as vertices and the inter-partition relationships
as directed edges in a partition graph.

We merge partitions based on several heuristics described below.
As we merge, we maintain the partition graph relations – if partitions
P and Q merge, the (non-Q) successors of P become the successors
of the newly merged PQ. At the end of our merging process,
we consider the final partitions to be our phases. The graph over
them defines the ordering of phases, and thus must be directed and
acyclic, otherwise no order is possible. Should a cycle exist in
the partition graph, we infer these partitions are part of the same
phase – their constituent events must be ordered at a finer granularity.
Thus, we merge partitions that form strongly connected components.
We perform this cycle merge after applying any heuristic that may
create cycles. By doing this, we ensure each step of our partitioning
algorithm starts and ends with a DAG over partitions.

The phase DAG is used to create a global ordering of the events.
This implies a global ordering of events per chare. As such, the
phase DAG must have additional properties that disallow ambiguity
in the order of events associated with each chare. We discuss the
requirements for this property in Section 3.1.4.

Finally, we refer to partitions that only contain dependencies
between application chares as application partitions. Those with
dependencies between application and runtime chares or purely
between runtime chares are runtime partitions. Throughout our
phase-finding scheme, we only merge application and runtime par-
titions during cycle merges. We perform this step to separate the
developers’ view of the program (application phases) from more
detailed information about the runtime system (runtime phases).
Cycles in the partition graph indicate we cannot disambiguate them;
thus, they must be merged.

3.1.1 Initial Partitions
The initial trace data consists of enter and exit times for each

entry method and entry method invocation calls (‘sends’). We call
any set of events that is guaranteed to execute serially within a
single unit of execution a serial block. In task-based models, the
serial blocks are intended to be fine-grained to aid in scheduling
work. As such, we infer that dependency events within a serial
block belong to the same larger phase. We use this knowledge to
group events into initial partitions. However, we may break a serial
block into multiple initial partitions to observe the separation of
application and runtime phases. Dependencies between application
and runtime or vice versa subdivide the serial block as shown in
Figure 2. Following this step, we have a graph of initial partitions

Serial Block

to/from application

to runtime

}
Partition A

}Partition B

Figure 2: Initial partitions can contain sequences of depen-
dency events within a serial block. Partition boundaries are
made when the dependencies cross application-runtime bound-
aries.

connected by dependency edges. The edges consist of (1) remote
invocations, (2) happened-before relationships between application
and runtime partitions of the same serial block, and (3) happened-
before edges inferred from Structured Dagger code (Section 2.1).
At this stage each partition contains events from a single chare only.

3.1.2 Inter-chare Dependency Merge
We split the trace into phases to represent parallel actions defined

by the developers. Therefore, partitions containing the matching end
points of a remote method invocation belong in the same phase. We
merge partitions along these dependencies. The resulting partitions
may span multiple chares. Merging by dependencies can result in
cycles in the partition graph. We conduct a cycle merge immediately
afterwards to maintain the DAG ordering. Algorithm 1 outlines this
process. A simple example is shown in Figure 3.

3.1.3 Serial Block Repair
There may be partitions that would have been merged in the

previous dependency and cycle merges had we not split the serial
blocks into application- and runtime-related portions. We now
restore those merges. The partition DAG includes edges from the
happened-before relationships within the broken serial blocks. For
each partition, we merge all directly succeeding partitions that share



serial {
// ... computation ...

int i = (thisIndex - 1) % arrSize;
arrChares[i].recvResult(data);

}

when recvResult(DataT data) serial {
// ... computation ...

}

(a) Program

entry method invocation

chare happened-before

serial_0

serial_0

serial_0

serial_0

recvResult

recvResult

recvResult

recvResult

(b) Trace

partition happened-before

partition

(c) Dependency merge (d) Cycle merge

Figure 3: (a) Each chare in the array arrChares invokes recvResult on its neighbor. (b) In the trace, we know of these invoca-
tions as well the dependency between the first serial and the when. (c) We merge blocks so that matching ends of the invocation
are in the same partition. These partitions inherit the dependencies of their contained blocks. (d) In this case, those dependencies
form a cycle, so they are merged into a single partition.

Algorithm 1: Merging Partitions Across Dependencies
dependency_merge (trace, partitions);

for message in trace do
send = get_source(message);
recv = get_sink(message);
p = get_partition(send);
q = get_partition(recv);
if p 6= q then

schedule_merge(p, q);
end

end
partitions = merge_scheduled(partitions);
partitions = cycle_merge(partitions);

the same type (entry method) of split serial block as shown in
Figure 4. These merges may also create cycles, so we conduct
another cycle merge; see Algorithm 2.

A similar merge can be done for neighboring serials. Suppose
a set of chares participate in serial n in a single phase. If those
chares then immediately participate in serial n + 1 in several
partitions, this may indicate the control flow of one multi-chare
group to another, indicating the latter serial partitions should be
merged.

Runtime Phase Application Phases Runtime Phase Application Phase

Figure 4: After merging phases due to dependencies and cycles,
we merge phases that would have been merged had we not bro-
ken the initial partitions at runtime-application boundaries.

3.1.4 Enforcing Orderability and Inferring Missing
Dependencies

In Section 3.2, we will use the phase DAG to establish a total order
of events for each chare. To ensure such an ordering is possible,
we must enforce extra properties on the DAG. We refer to the set
of partitions at the same maximum distance from the beginning of
the partition graph as a leap. Using this definition, we require the
following two properties of the partition DAG:

Algorithm 2: Restoring Merges Across Split Blocks
repair_merge (trace, partitions);

for event in trace do
p = get_partition(event);
prev = get_serial_happened-before(event);
q = get_partition(prev);
if p 6= q ∧ is_runtime(p) = is_runtime(q) then

merge(p, q);
end

end
partitions = cycle_merge(partitions);

1. The partitions in each leap do not overlap in chares.

2. Each partition has successors that span all of its chares except
the chares that do not appear in any successor leaps.

Together, these properties ensure that there is a single path through
the phase DAG for each chare. This in turn guarantees that no two
events of the same chare can be assigned the same logical step.

We may not have enough control dependencies necessary to prop-
erly order all the partitions. For example, control decisions made
through the runtime may not have been traced. This lack of depen-
dencies can result in a disconnected partition DAG. In some cases
the DAG might still meet the above criteria, but often it leads to
leaps with overlapping partitions. We attempt to infer the missing
dependencies by examining the physical time order of events. If
we still cannot meet property (1), we assume that the overlapping
partitions are part of the same phase and merge them. At this point,
the partitions are finalized as phases. However, we still must order
application and runtime partitions with overlapping chares. We
use a more liberal physical time comparison to do so. While this
meets property (1), branching in the phase DAG can violate prop-
erty (2), so we add edges based on leap structure. We explain these
operations below.
Inferring Dependencies from Partition Sources. The initial events
in each partition must be sources (sends) as matching send and re-
ceive events were merged in Section 3.1.2. These events start the
phase and have the fewest dependencies. We infer that the ordering
between these partition-starting events indicates an ordering between
their partitions. We compare the physical time of these partition-
starting sources per chare and use the result to add happened-before
relationships (Figure 5). When necessary we merge cycles created
by these added dependencies; see Algorithm 3.
Merging Concurrent, Overlapping Phases. The additional de-
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(a) Physical time ordering (red) of initial source
events of the blue chare.

A

B

C

(b) A→ B is created and leaps are calculated.

A

B

C

(c) A and C are merged as they are in the same
leap.

Figure 5: We infer happened-before relationships using physical time between initial source events within partitions. We merge
partitions at the same leap with overlapping chares. Event color indicates chare.

Algorithm 3: Inferring Dependencies
infer_dependencies (partitions);

for p in partitions do
for event in p do

if is_source(event) then
next = find_next_source(event);
q = get_partition(next);
if p 6= q then

add_edge(p, q);
end

end
end

end
partitions = cycle_merge(partitions);

pendencies of the previous step may not solve the chare-overlap
problem. Some chares may be represented by only receive events in
a partition and thus no dependencies will be added. The problem of
not having enough dependencies to order partitions is the comple-
ment of the cycle problem where we have too many dependencies.
We again infer that the inability to order suggests we should merge
into a larger phase and handle the relationships in the ordering stage
instead (Figure 5c and Algorithm 4). This is the final merge in our
phase-finding algorithm. The resulting partitions are our phases.

Algorithm 4: Merging By Leap
infer_merge (partitions);

all_leaps = compute_leaps(partitions);
k = 0;
while k < |all_leaps| do

leap = all_leaps[k];
for p, q in partitions(leap) do

if chares(p) ∩ chares(q) then
schedule_merge(p, q);

end
end
partitions = merge_scheduled(partitions);
k = k +1;

end

Enforcing DAG Properties. We maintained the application/run-
time partition division during the previous (non-cycle) merges. This
means the phase DAG may still have some chares that appear in
two phases at the same leap – an application phase and a runtime
phase. We impose an order between these two phases again based
on the physical time of their initial sources. If there is no chare
overlap between initial source events, we compare across chares
on a per-processor basis. By adding these phase-dependencies, we
ensure our first DAG property.

Finally, we add dependencies to ensure property (2). We preserve

the leap structure from the previous steps and thus only add relation-
ships that maintain this leap order. We determine whether the direct
successors of each phase contain all chares in that phase. If there are
missing chares, we find the next leap containing the missing chares.
We add happened-before relationships between the original phase
and all phases in that found leap that contain the missing chares. If
no such leap exists, we have verified the phase is in the largest leap
containing those missing chares, meeting property (2). Algorithm 5
outlines this process. Figure 6 demonstrates the necessity of this
step and shows the added relationship.

X

Q
P

R
S

Figure 6: Without a relationship between phases X and S, both
would have a gray chare event at the eighth step. To prevent
this, we create a happened-before relationship from X to S.

Algorithm 5: Enforcing DAG Properties
enforce_chare_paths (partitions, all_leaps);

last_map = ∅;
k = maximum_leap;
while k >= 0 do

leap_k = all_leaps[k];
seen_chares = ∅;
for p in partitions(leap_k) do

p_chares = chares(p);
seen_chares = seen_chares ∪ p_chares;
missing_chares = p_chares - chares(children(p));
found_leaps = get_leaps(last_map, missing_chares);
sort(found_leaps);
for leap in found_leaps do

found_chares = ∅;
for q in partitions(leap) do

overlap = missing_chares ∩ chares(q);
if |overlap| > 0 then

add_edge(p, q);
found_chares += overlap;

end
end
missing_chares = missing_chares − found_chares;

end
end
for chare in seen_chares do

last_map[chare] = k;
end
k = k −1;

end



3.2 Step Assignment
Within each phase, we assign local logical steps to each event.

Once the per-chare order is set, step assignment is straightforward:
we apply the happened-before dependencies between tasks, en-
forcing that a receive is at least one step after its matching send.
The initial sources in each phase have a local step of 0. All other
events have a local step of one over the maximum of the events
that happened-before them – the prior event along the chare or their
matching send when they are a receive. Once the local steps have
been determined, we offset them by the maximum step of their phase
DAG predecessors to set the global steps.

3.2.1 Reordering of Operations
The most direct ordering policy for events of each chare is by

physical time. We allow this option, but in terms of representing
the developers’ understanding one can often do better by reordering.
The physical time order is the result of non-deterministic factors,
affected by imbalance in computation, travel time over the network,
and queuing policy of the runtime. We reorder to show a structure
of dependencies unaffected by these concerns.

The order of events within a serial block is determined explicitly
by the developer, so we focus on ordering these blocks. We assign
each event a clock value w along its chare. The absolute value of
w is immaterial; it is only the value of w with respect to the other
blocks of the chare that matters. The initial sends in each phase
are assigned a w value of 0. The subsequent sends increment until
the end of their serial block. The receives matching these sends are
assigned the value wsend + 1. Sends occurring after a receive count
up from the w of that receive.

We use w to order the serial blocks of each chare. Events within a
serial block maintain their order. First, the serial blocks are ordered
by the w value of their initial event. Then ties are broken by the chare
ID of the event that invoked the serial block. The first comparison
imparts logical order from the start of the phase. The second imposes
an ordering on the serial blocks that logically happened at the same
time. Figure 7 shows an example of this comparison in practice. If
these two steps are not sufficient to order the serial blocks, we go
back a step, comparing the source blocks. The ordering may not
be ideal in all cases and pathological examples can be constructed.
However, prior knowledge of the simulation could improve the
ordering. For example, if the chares represent neighbors in 3D
space, an ordering that takes this data topology into account will
likely be more intuitive than tie-breaking by chare ID.

0

0

1

1 22 213 2

1 22

2
1

3

2

Sort by Serial Block w

1 22 21 32

Sort by Source Chare

from

from

from from

Figure 7: The blue and white chares lead to sink events on the
gray chare with the same w. In the first ordering comparison,
these two events cannot be ordered, so a second comparison
orders by the chare of the matching source event, placing the
event from the blue before that of the white.

Figure 8 demonstrates reordering for the first two iterations of
Jacobi 2D. Events are colored by their phase membership. There is
an alternating pattern of application phase and runtime phase. The
runtime chares are drawn on the bottom with a gray background.
Without reordering, the first application phase is not compact or
recognizable. After reordering, both the first and second application
phases reveal a shared a communication pattern that is not apparent
in either of the non-reordered versions.

(a) Physical time order of task events

(b) Reordered task events

Figure 8: Two iterations of Jacobi 2D with 64 chares on 8 pro-
cessors. Colors indicate phase. Steps were assigned with events
(a) in recorded order; and (b) reordered.

Reordering for message-passing models. We extend the reorder-
ing approach to process-based message-passing programs. In this
model, each serial block contains a single send or receive event.
The assignment of w remains the same for the initial sends and the
receives. Unlike in the task-based model where each source only
has one guaranteed prior sink (the one at the beginning of its serial
block), these sends may have multiple receives that happened-before
them. The sends are recorded from where they are called by the
developer. We cannot infer any dependency on the ordering of the
receives on the process. Therefore, we do not allow the sends to be
reordered. The later sends are assigned the value

wsend = 1 +max {wreceive |recieve → send}

This value ensures the send maintains its position after the receives,
but that the receives may be reordered. Furthermore, receives that
come after the send in physical time may be reordered to come
before it as shown in Figure 9. However, this scheme cannot move
a receive from before to after the send as we have no dependency
information indicating when that should occur. For example, if the
receive marked 6 in the figure were meant to go after the send, we
could not discern that. We must assign the send the value of 7.

3 6 1 7 3 4 6 74 1

Figure 9: The send is assigned the value 7 since the maximum
value of the receives before it is 6. The receive after it is moved
before it based on value.

Figure 10 shows two organizations of a trace of an early version
of a merge tree algorithm [18] written in MPI and executed on 1,024
processes. The top image shows the results of the message-passing
trace organization of Isaacs et al. [13] using our stepping without
reordering. As Isaacs et al. originally observed, there are non-ideal
alignments in the early steps. Data-dependent load imbalance causes
some groups of processes in the merge tree algorithm to send their
second phase messages before other groups have finished their first.
With reordering, those early steps reveal more parallel structure.



(a) Physical time order forces some events to the right.

(b) Reordering recovers parallel structure of initial steps.
Figure 10: Logical structures of a traced 1,024-process MPI
merge tree algorithm. Irregular receive order forces some
events to be stepped much later than their peers. Reordering
restores regularity.

3.3 Complexity
The first stage of our algorithm involves successive operations

performed on the partition graph GP (V,E). Initially the nodes
of this graph are messaging events grouped by their calling entry
method. Thus, |V | is bounded by the number of messaging events.
Most events have at most 3 edges – their matching send or receive,
and then the happened-before and after events in the entry method
should they exist. Broadcasts events have more edges, but these
edges will be merged away during the dependency merge (Algo-
rithm 1). As the merges find short phases, the graph grows large in
leaps with relatively few edges. Therefore, O(V + E) operations
such as the cycle merges are closer to linear in |V |. Event-centric
operations such as the dependency merge, block-repair merge, and
dependency inference (Algorithms 1, 2 and 3) iterate over each event
and its message partners and are thus close to linear in |events|
as well. The leap merge (Algorithm 4) can aggregate linearly in
|V |. Algorithm 5, the addition of phase dependencies to prevent
overlapping steps, works backwards through leaps to keep track
of where chares are represented so searching need not be repeated.
The chares must be checked, but this is limited by the events in the
phase. There are few phases at each leap and few direct dependen-
cies between phases, keeping the number which must be checked
low. Thus, in most cases the partitioning stage is near linear.

The ordering stage must replay each event and sort along each
chare. If all events were partitioned into a single phase, the ordering
would be O(events log events). However, most traces will have
many relatively short phases. As each phase is handled individually,
this stage could be parallelized.

Memory is the more limiting aspect. We suspect an out-of-core
version could be developed to leverage the graph sparsity and loose
relation to physical time.

In this work, we focus on the transformations required by the algo-
rithm rather than the efficiency, leaving the suggested enhancements
to future work. We demonstrate the efficiency of the algorithm in its
current form in Section 6.1.

3.4 Comparison to Message Passing Models
The reordering approach presented in this section shares some

obvious similarities with the original scheme for message-passing
models proposed in Isaacs et al. [13]. However, issues such as the

lack of dependency information and over-decomposition require
substantially different techniques. We briefly compare the two
approaches.

Message-passing models can assume that per-process events in
physical time indicate a control flow order. Isaacs et al. assume
happened-before dependencies based on that order. While this
assumption is not always true, e.g., Figure 10, it does provide a
wealth of additional dependencies to inform the partitioning stage.

Both algorithms create a logical structure of events grouped into
phases through a partitioning and stepping stage. Isaacs et al. use
a single inter-process communication event as the initial partition,
while we are able to group more events when we have information
about serial blocks. Both algorithms do an inter-timeline depen-
dency merge and must merge cycles to create order. However, be-
cause of strict time-order within-process dependencies, the message-
passing algorithm never has overlapping processes at the same leap
or lack of connections between leaps. Thus, it does not have to
consider the DAG properties we enforce in Section 3.1.4.

The message-passing algorithm does not reorder events while
assigning steps. Furthermore, in contrast to our algorithm, it uses
a more complicated step assignment that prioritizes aligning its
send events, discouraging overlapping of sends and receives. Our
algorithm does not do this as we expect more overlap of source and
sink dependencies in asynchronous models. In general, we prioritize
the sink events as, unlike in message-passing, the sinks rather than
the sources determine the structure by initiating serial blocks.

4. PERFORMANCE METRICS
Traditional metrics of lateness or delay [13], which measure the

difference in completion time among operations at the same logical
timestep, show differences from the ideal in bulk synchronous appli-
cations. However, they are not suitable for asynchronous task-based
applications as the order of tasks is potentially non-deterministic.
In these models, we do not expect all events occurring at the same
step logically to be executed at the same time, nor do we necessarily
consider that ideal. Instead, we consider the ideal to be efficient
use of processors. One indicator that processors are not being used
efficiently is idling. We create a metric to show where idling is being
experienced. We create two more metrics to further examine how
non-idle time was spent with respect to the organization of events.
We calculate metrics over a variety levels: the individual events,
serial sub-blocks, serial blocks, and phases. Our organization allows
us to identify these levels and make localized comparisons taking
into account the program structure.
Idle Experienced. We highlight idling in the organization of events
with the idle experienced metric. This metric is non-zero at events
that are preceded by idle time on their processor. The event occur-
ring directly after recorded idle time has idle experienced of the
length corresponding to the preceding idle. However, in calculating
idle experienced, we do not stop at that event. We continue forward
in physical time along the processor to the first event of each subse-
quent serial block. If that event was waiting on a dependency that
started before the end of the idle time, that event is also assigned
idle experienced. We stop searching the subsequent events when
we find one dependent on an event that happened after the recorded
idle time. Figure 11 shows this assignment for an idle span on one
process.

Figure 12 shows how some tasks experience idle while waiting for
the reduction in Jacobi 2D. In some instances this compares times
across processors in which case clock synchronization problems can
lead to erroneous results. Applying post-processing algorithms [25,
5] to ameliorate this issue would help. However, as we use this



Figure 11: The two red-outlined serial blocks following the idle
period (black bar) on the middle process experience the idle as
they wait for their dependencies. The next block does not as it
is dependent on a block starting after the idle.

metric to determine where we should focus our attention, blocks
that would not be assigned idle experienced due to synchronization
offsets are unlikely to be of as much interest as their idle time could
only be on the order of the clock skew.

Figure 12: Idle experienced by events in a 16-chare execution
of Jacobi 2D in logical and physical time.

Differential Duration. In many cases, computations in the same
phase that occur at the same logical timestep are the same action and
thus can be assumed to require the same amount of time. We use the
dependency events to divide serial blocks into event-delimited units
of computation and compare their duration. For each event in a serial
block, we define a sub-block to span the time from the previous
event in that block to the end of the event. Any leftover duration is
assigned to either the event associated with starting the serial block
if it was recorded, or the last event in the serial block (Figure 13).
Assigning sub-blocks in this fashion allows us to compare durations
across the logical steps associated with the events defining each
sub-block. The differential duration is the excess time spent in
the sub-block with respect to the shortest time at that logical step.
Figure 15 shows this metric mapped in both the logical time chare
view and the physical time processor view. One chare experiences a
longer computation block (orange) than its peers.

source 1 source 2 sink

source 1 source 2 sink

Figure 13: Three examples showing how serial blocks are di-
vided based on the dependency events.

Imbalance. We can use the duration we calculated previously to
determine computation imbalance at the phase level. For each
processor, we sum the total duration in that phase and calculate the
maximum difference between the processors with the most and least
work. We can also see the spread of this imbalance by calculating per
processor the difference between its total duration and the minimally
loaded processor. Figure 14 shows imbalance per processor mapped
to each event. The iteration with the long event, shown in Figure 15,
has higher imbalance than the one after it. In processor space, the
high imbalance is shown in orange for a single processor. In chare

space, it is shown on two chare timelines as both are executed on
that one imbalanced processor. This metric captures the variation of
imbalance across the processors.

Figure 14: Processor imbalance shown per event for a 16-chare
execution of Jacobi 2D. The iteration with the long event from
Figure 15 shows greater imbalance both for the chare of that
event and the other chare on the processor.

Figure 15: Differential duration on a 16-chare execution of Ja-
cobi 2D. One chare experiences a significantly longer compute
time (orange).

5. ADDITIONS TO CHARM++ TRACING
The Charm++ tracing framework traces events as they occur on

each process. We require events to be semantically connected to
chares and chare arrays. Each application event has an associated
chare identifier (ID) and we expanded the format to also include
a chare array ID. We recorded more control flow information by
tracing common runtime behaviors, though as seen in Section 6, we
did not capture all control information.

A commonly used Charm++ operation is a reduction over an
array of chares. A reduction is performed by each chare invok-
ing the contribute method on a process-level chare of type
CkReductionMgr. When all the local contributions are gathered
on a process, an entry method is executed that is specified in a call-
back passed to the contribute invocation. Previously, only the
explicit messages in the reduction were recorded between proces-
sors. Hence, the local reduction events on the process between the
local chares were not recorded.

Rather than abstracting these events into a single operation that
hides the runtime chares, we added the tracing necessary to follow
the local reduction on the process. This allows us to examine how
the process-level chare, CkReductionMgr, is scheduled on the
resources shared with the application-level chares. We added the
dependency between the application and runtime as a message from
one application chare on each CkReductionMgr representative
and added the missing internal messages necessary to reconstruct
the control flow structure.

The overhead of adding process-local reduction events is a small
constant cost over the previous tracing overhead. The contribute



call can only be made inside an entry method, so there always exists
a local event for the method that precedes it. Therefore, adding
another short traced event for the local reduction event incurs a low
cost that we have found to be negligible in practice.

6. CASE STUDIES
We demonstrate the accuracy of our approach through two proxy

applications, LULESH [1] and LASSEN [22], both of which have
Charm++ and MPI implementations, allowing us to compare logical
structures. We executed these applications on an Infiniband cluster
running a Red Hat-derived Linux distribution and the MVAPICH
MPI implementation. We collected traces using Score-P [17] for
MPI and the native logging for Charm++.

All figures were generated on an Intel Core i7-4770 with 32 GB of
RAM using a modified version of Ravel [12]. In particular, we draw
recorded idle time as thin black bars similar to the representation in
Projections [21]. In the logical structure view, we group all runtime
chares on the bottom. The logical structure for MPI traces was
computed using the algorithm from [13] without modification.

6.1 Inferring Structure in LULESH
LULESH is a proxy application for hydrodynamics simulations.

We show that the logical structure we compute for the Charm++
trace corresponds to the logical structure for MPI, implying our
structure is meaningful. We demonstrate what happens in our logical
structure when we cannot infer dependencies as in Section 3.1.4.
We then examine the time needed to compute logical structure for
LULESH traces.

Figure 16 shows the logical structure computed from both the
MPI and Charm++ traces. The first (blue) phase represents the
problem setup. Afterwards, the MPI trace has a repeating pattern of
three phases followed by an allreduce (green). After problem setup
(blue), the Charm++ trace has a repeating pattern of two phases
followed by an allreduce (in brown and later in purple). The two
phases have mirrored communication patterns to the first and third
repeating phases in MPI.

(a) MPI, 8 processes

(b) Charm++, 8 chares, 2 processors
Figure 16: Logical structure for LULESH traces from (a) MPI
and (b) Charm++, colored by phase.

Figure 17 shows the logical structure computed for the Charm++
trace without inferring the dependencies and merging described in
Section 3.1.4. The DAG properties are still enforced. The initial
phase from Figure 16 is split into several smaller phases that are
forced in sequence. Each of the phases before the allreduce is split
in two. In both of these cases, the lack of dependency information
connecting these smaller phases together results in this incorrect
structure.

We apply our logical structure algorithm to several LULESH
traces to examine its performance for increasing numbers of itera-
tions and chares. Figure 18 shows a 64-chare LULESH execution at
increasing iteration counts. The computation time is directly propor-

Figure 17: 8-chare LULESH logical structure computed with-
out inferring dependencies as in Section 3.1.4. The initial phase
from Figure 16(b) is broken into several phases placed one after
another. Each phase before the allreduce is split in two.

tional to the number of iterations – it is not affected negatively by the
doubling of phases. Figure 19 shows eight iterations of LULESH at
increasing problem size. We hold the chare (sub-domain) size the
same, resulting in increasing chare counts. The behavior is incon-
clusive. The amount of time performing the merge of Section 3.1.4
comprises the bulk of the additional time, likely due to the greater
chare counts requiring more comparisons.
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Figure 18: Time to calculate logical structure for a 64-chare
LULESH execution at increasing iterations.
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Figure 19: Time to calculate logical structure for eight itera-
tions of LULESH at increasing chare counts.

6.2 Comparing Performance in LASSEN
LASSEN is a proxy application that models the propagation of

a wavefront through space. We used the default problem in which
space is decomposed as a regular Cartesian grid. We used eight
processors for all our runs. The Charm++ implementation was run
in both 8 and 64-chare decompositions. The 8-chare Charm++ run is
known to perform comparably with the MPI implementation, while
the 64-chare one tends to perform better.

Figure 20 shows the structure results for the three traces as well as
an MPI trace on 64 processors, all colored by their assigned phase.
All four show a repeating pattern of a point-to-point messaging
phase to several neighbors followed by an allreduce. In MPI, the
allreduce is abstracted into its collective call and thus is shown as
two steps (the call and the computation before it). In Charm++,
the allreduce is visible as its reduction tree in the runtime chares



(a) MPI, 8 processes (b) Charm++, 8 chares, 8 processors

(c) MPI, 64 processes (d) Charm++, 64 chares, 8 processors
Figure 20: Logical structure for LASSEN traces from (a, c) MPI and (b, d) Charm++, colored by phase ID. In each, there is a
repeated pattern of a point-to-point phase followed by a collective/runtime phase.

(bottom) and broadcast to application chares. The Charm++ traces
show additional two-step phases between the large point-to-point
phase and its subsequent allreduce. In this short phase, each chare
invokes itself, indicating this is likely a pure control message to
move the computation forward. In the Charm++ traces, the structure
of the large point-to-point phase alternates. This is not true for
the MPI trace. Both are looping through the same alternating data
structures to create these messages, but the order of the elements in
those data structures may differ by construction.

We observed a large amount of idle experienced every other broad-
cast (not pictured). To explore why this was occurring, we color
by the differential duration metric (Figures 21 and 22). We see a
repeating pattern of two events with much greater duration than their
peers. The logical structure makes it easy to tell that the long events
have the same chare and role each iteration, a conclusion that would
require further investigation to reach using a traditional physical
time and processor view. These events mark the first sends after two
of the main computation events. They are likely so much longer
because we are looking at early iterations and thus the wavefront is
in a small region apportioned to a single chare.

Figure 21: 8-chare LASSEN trace colored by differential dura-
tion. In the logical structure (top), a repeated pattern shows the
same events of the same chare are associated with higher dura-
tion. Physical time (bottom) makes it difficult to discern these
events are the same, as there is no indication where it falls in
the control flow.

Many iterations later, we still see a repeated pattern of long du-
ration, but for different chares and more of them (Figure 23). This
makes sense as the wavefront grows in the domain. We chose dif-
ferent color ranges for the 8 and 64-chare runs for visibility, but
the 64-chare run exhibited a maximum differential duration one
fourth that of the 8-chare run due to splitting the wavefront into
smaller pieces. To check how well these tasks are scheduled, we
examined the trace using the imbalance metric (not shown) and saw
that while still uneven, the work is spread more equitably in the
64-chare run. This led to less than half as much imbalance overall
across processors and thus better performance.

Figure 22: 64-chare LASSEN trace colored by differential du-
ration. Like Figure 21, the logical structure shows repeated
long events (boxed) over iterations.

(a) Charm++ LASSEN, 8 chares

(b) Charm++ LASSEN, 64 chares
Figure 23: As the wavefront propagates, more chares share the
high differential duration.

7. APPLICABILITY TO OTHER TBRs
We have focused our efforts on Charm++ traces. Through this

process, we have observed several principles that we believe will aid
in adapting our methods to other task-based models and runtimes.
First, the data dependencies of the application domain contribute sig-
nificantly to the logical structure. Decomposing the domain and then
managing the interactions among its pieces are central to designing
a parallel program. We represent these data dependencies using
timelines of sub-domains (encapsulated by chares in Charm++),
rather than processes.

Second, an idealized replay of events within phases can recover
parallel patterns previously obscured by asynchrony. Logical struc-



ture is meant to reflect the developers’ thinking. The ideal scenario
is relatively easier to reason about. We have shown our strategy
improves structure for both Charm++ and MPI.

Finally, logical structure is represented as a phase DAG and
maintaining this structure can help in finding phases. Too many
dependencies or too few indicate that partitions should be merged.
In Charm++, we had a dearth of dependencies, so we recognized
true time differences between the sources of partitions as a good
heuristic for ordering them. However, there are some cases in which
this approach does not work. We examine one such case below and
prescribe measurements that would aid analysis of any TBR trace.

7.1 Improving TBR Traces
While our case studies show our algorithm successfully finds

structure in Charm++ applications, it can produce sub-optimal or-
derings when not enough data about the control flow is recorded.
Parallel tracing utilities usually only record control information
when it is explicit, as in the case of a message. In process-based
traces, more control information can be automatically inferred from
the ordering of events. Analysts with significant knowledge of their
chosen parallel model may also be able to infer more about the
control flow when examining a trace visually. To enhance analysis
for task-based models, more control flow events should be explicitly
recorded in the trace, allowing computational approaches such as
ours to use this information.

Figure 24 shows the logical structure computed from a 16-chare
run of a PDES mini-app. In PDES, each chare of the mustard
phase, which runs the simulation, calls the completion detector when
finished. The completion detector is represented by the gray phase
(directly below the mustard phase). The call to it is not recorded in
the trace. Because there is no trace data about the dependency, our
algorithm places the mustard and gray phases concurrently rather
than in sequence.

Figure 24: 16-chare, 4-process PDES logical structure, colored
by phase. The gray phase is a completion detector called at
the end of the mustard phase. This control dependency is
not recorded, so there is nothing structurally to prevent both
phases from covering the same global steps.

In cases like the above, where much of the control information
passes through the runtime, we must choose a level of abstraction
with which to represent internal runtime dependencies. For example,
MPI collective operations are represented as single calls though
the actual use of resources during an MPI collective operation is
complex. None of the underlying dependencies implementing it
are recorded. The control flow through it at the application level
is understood implicitly. Even within a send-receive pair in our
Charm++ traces, there are a number of dependencies within the
runtime that get invoked. We are not interested in that level of detail,
especially as the developer has few options for replacement were a
problem to be found.

To aid analysis of task-based parallel traces, the following should
be retrievable from the trace without runtime-specific knowledge:

1. The correspondence between events, the data they act upon,
and the runtime elements executing them.

2. Control flow between application events that passes through
the runtime, either by tracing runtime information or as an

abstraction.

3. Sets of events that cannot be divided by runtime scheduling.
We have referred to these throughout as serial blocks.

Ideally, a common standard would be created so this data could be
obtained from a variety of different models.

8. RELATED WORK
Charm++ has an associated performance analysis and visualiza-

tion tool, Projections [16, 20, 21], that provides several statistical
plots supporting profile analysis for common problem sources such
as grain size, as well as a process-level physical timeline visu-
alization. To decrease the number of processes to be examined,
Projections has mechanisms for user-guided discovery of outlier
processes. We focus on a finer level, that of chares and phases, to
analyze metrics calculated over these levels and chare interactions.

Wheeler and Thain [27] extracted parallel structure in the form of
an ‘event description graph’ from traces of shared memory programs.
They searched for problematic subgraphs and visualized them with
GraphViz [10]. To obtain the parallel structure, they limited their
models to those where such a structure was available at runtime, in
contrast to the traces we analyze.

Logical time has been used for trace analysis and visualization,
with an emphasis on debugging [19, 26]. The use of the term
“logical” in those works refers to discretization by happened-before
relationships as the events were executed. Our use incorporates
the logical mental model of developers and analysts with which to
reason about parallel behavior.

Parallel traces are commonly visualized in physical time only
by the resources (e.g. processes, threads) on which they were
recorded [8, 21, 23, 24, 28]. Blochinger et al. [6] used binned
time to create layered node-link diagrams representing thread exe-
cution graphs and highlighted potential problems calculated from
those graphs on the visualization.

Automated tools like Scalasca [11] analyze event traces and can
detect known problematic patterns, such as late arrival of a mes-
sage, and compute a severity score that is mapped to source code
and machine locations. However, Scalasca is currently limited to
message-passing and does not support task-based programming
models. Moreover, whereas Scalasca provides an aggregate sum of
severity scores per process and source-code location, our metrics
are mapped onto events in logical time.

9. CONCLUSION AND FUTURE WORK
We have presented an algorithm for transforming Charm++ traces

from the physical time in which they are recorded into a logical
structure. This logical structure aids developers and analysts in
understanding dependency patterns and provides context for aberrant
features in the trace. We demonstrated our algorithm can produce
meaningful structure even when many control dependencies are
not recorded by the trace. Our approach addresses difficulties in
understanding non-deterministically scheduled tasks by a heuristic
reordering scheme. Applying the reordering concept to message-
passing models has also resulted in better representation of parallel
structure. Additionally, we mapped metrics descrbing detrimental
execution behavior onto the logical structure and showed how this
can be used to analyze performance. While we have focused on
Charm++ in this work, we expect our organization by data sub-
domains, constraints on phases, and reordering scheme to apply to
other task-based models.

Despite these successes, we are limited in what we can transform
by the dearth of control dependency data recorded. We have made a



set of recommendations regarding information that should be traced.
As this becomes available, we will need to improve our algorithm.
Inferring dependencies may no longer be necessary; instead, differ-
ent phase detection methods will need to be explored. Further, while
this approach aids in visual analysis, new visualization techniques
are needed that scale to large numbers of parallel tasks and show
lifetime and migration between processors.
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