
Supplemental Material for “Preserving Command Line Workflow for
a Package Management System using ASCII DAG Visualization”

Katherine E. Isaacs and Todd Gamblin

Fig. 1: Dependency Graph Characteristics for Tool Blocks

Tool # Nodes # Edges Layers Nodes per Layer Question Question Layers

GraphViz 11 22 4 1-2-5-3 paths 1 & 3
git-like 11 22 4 1-2-5-3 paths 1 & 4
graphterm 11 22 5 1-1-2-4-3 paths 1 & 4

GraphViz 17 27 6 1-1-4-2-6-3 dependencies 5
git-like 17 26 7 1-2-4-2-1-4-3 dependencies 4
graphterm 18 26 5 1-4-6-5-2 dependencies 4

GraphViz 22 45 7 1-1-1-4-6-6-3 paths 1 & 5
git-like 22 45 7 1-1-1-4-6-6-3 paths 1 & 5
graphterm 22 45 7 1-1-1-4-6-6-3 paths 1 & 5

GraphViz 34 62 7 1-2-4-5-5-11-5-1 dependencies 8
paths 1 & 7

git-like 33 60 7 1-1-4-5-5-11-5-1 dependencies 6
paths 1 & 7

graphterm 34 61 7 1-2-4-5-5-11-5-1 dependencies 6
paths 1 & 7

1 EXPERIMENTAL OBJECTS USED IN STUDY

We provide more details about the experimental objects used in the
study. Fig. 1 appends information about the number of layers per
graph, the division of nodes in each layer, and the layers on which
the target nodes for each question resided for the Tool block graphs.
In some cases we were able to choose graphs that had similar major
dependencies, resulting in highly similar graph structures.

2 DEPENDENCY VISUALIZATION FEATURES IN GITHUB
REPOSITORIES

We performed a online search for existing methods for visualizing
dependencies using the search string “site:github.com visualize de-
pendencies.” We used Google search in an incognito tab of a newly
installed Google Chrome with no signed in accounts. We manually
retrieved links from the 49 returned pages. Some links were duplicated
between results pages. We added additional links found from examin-
ing the total ones (procedure described below), resulting in a total of
521 links examined.

We explored each link to determine if it had a dependency visual-
ization feature. If the returned link was not a project page (e.g., it was
an issue, feature request, or project file) and did not mention visual-
ization, we navigated to the main project page of the returned link. If
the returned link referred to a project we already analyzed, we skipped
it. We also skipped projects that were general visualization tools or
were not targeted at a computing domain. For example, we skipped
all projects where the target of the visualization was biology-related.

• Katherine E. Isaacs is with the University of Arizona E-mail:
kisaacs@cs.arizona.edu.

• Todd Gamblin is with Lawrence Livermore National Laboratory E-mail:
tgamblin@llnl.gov

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

We included machine learning network visualizations but not sentence
structure dependencies in natural language processing or scene graph
overlays in computer vision. We skipped links that were blog posts or
personal websites. We manually inspected stand-alone code snippets
(‘gists’). If the returned link was a discussion thread (e.g., for an issue
or feature request) and mentioned a possible outside-project visualiza-
tion, we followed those links. For projects that were lists of links to
other projects, we searched for promising links using the strings ‘visual’
and ‘dependenc.’ Of the 521 links, we found 483 unique projects.

From the main page of any project, we assessed the graph visual-
ization features in the following manner. If we could discern enough
information from the link returned by the search (sometimes the manual
or wiki) or the README, we associated the found features with the
project. If the graph visualization procedure was not fully explained
(e.g., an image was shown but the libraries to generate it were not
described or text contained something like ‘visualizes with GraphViz’),
we performed a directed search of the code to determine what the partial
explanation meant. If no visualization procedure was mentioned in the
README, we either read the entirety of the source code (for small
code bases) or directed our search using Github to search the repository
for the terms: (graph, network, tree, visual, view, plot, diagram, layout,
svg, png, pdf, html, dot, gexf, graphml, dagre, d3, indent, ascii).

For the keyword search, we used all terms even after finding a
visualization so that no keyword or visualization would get preference
simply due to order of the search. We manually inspected the snippets
returned in the first five pages of results for each term if they existed and
searched further on promising leads. We limited the inspection to five
pages a priori with the rationale that most users would not look further.
Some projects had large numbers of results due to html documentation,
repeated use of png or svg assets, or alternate meanings of the search
terms (e.g., ‘Visual Studio’ in every code file turning up for ‘visual’).
Uses of GraphViz that were documentation-only (e.g., requirements
of the documentation tool or library such as Doxygen, not to visualize
dependencies) were not counted.

Some of the links found through examining the project links led
to external sites. For those we looked at the features, gallery, and



documentation pages for evidence of dependency visualization. We did
not however read the entire documentation. Often in those cases we
were unable to discern exactly how the visualization was accomplished,
so data about what libraries or tools were used was not recorded. In our
summaries, we consider the libraries used to be ‘unknown’ for these
projects.

We found dependency visualization features in 224 of the 483
projects. Some projects had multiple visualization options, such as
outputting a dot file to be rendered, rendering a png, and having a
web application. Of the 224 projects, 108 had a visualization related to
GraphViz through either outputting a dot format file (71 projects) or
the use of a GraphViz-based rendering or layout algorithm to generate
an image file, PDF, HTML file, or application (52 projects). Eighty-
three of the projects enabled an HTML viewer for their visualization.

In addition to the GraphViz-based ones, 47 used d3js as a central tool
(e.g., force-directed layout, tree, Sankey diagram), 11 used dagre, five
used ngraph, and three used visjs or networkx. A complete list of tools
can be seen in Fig. 3. The most common form of visualization was a
layered node-link diagram (e.g., hierarchical layout, dot, Sugiyama)
with 129 projects. Fifty projects offered a force-directed layout and 34
showed a tree, 22 of which were drawn with ASCII.

Fig. 2 shows the number of instances of each view we categorized.
Fig. 3 shows the number of instances of each tool or library being used
to create the visualization. Fig. 4 shows the number of instances of
each format returned by the visualization features that we found. Web
applications are uniformly categorized as ‘html.’

Included in these supplemental materials is a CSV listing all of the
links and their categorization, ordered by Google search ranking.

Instances

hierarchical node-link
force-directed node-link

node-link tree
other node-link

sunburst
adjacency matrix

circular node-link
3D node-link

chord diagram
Sankey diagram

treemap
flamegraph

git-like node-link
CodeCity-like
arc diagram

129

52

34

16

5

4

3

3

1

1

1

1

1

1

1

"github.com visualizing dependencies": views

Fig. 2: Types of visualizations used by Github repositories.



Instances

GraphViz
d3js

homegrown / unknown
dagre

ngraph
networkx

vis.js
gephi
neo4j

plantUML
sigma

webpack-visualizer
diagrammeR

git-dag
GraphSharp

javascript infovis toolkit
jointjs
JUNG

mdr/ascii-graphs
npmgraph.an

QuickGraph
vivagraphjs

WebCola
yEd

Zest

108

47

41

11

5

3

3

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

"github.com visualizing dependencies": tools

Fig. 3: Tools and libraries used for visualization features in Github repositories.

Instances

html

dot
png

ascii tree
desktop

svg

pdf

graphml

other image format

java

neo4j

ascii git-like

ascii node-link

DGML
gexf
vcg

83

71

38

22

20

19

9

8

4

3

2

1

1

1

1

1

"github.com visualizing dependencies": formats

Fig. 4: File formats of the visualization features in Github repositories.


	Experimental Objects used in Study
	Dependency Visualization Features in Github Repositories

