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Abstract— Performance analysis of parallel scientific codes
is becoming increasingly difficult due to the rapidly growing
complexity of applications and architectures. Existing tools fall
short in providing intuitive views that facilitate the process of
performance debugging and tuning. In this paper, we extend
recent ideas of projecting and visualizing performance data
for faster, more intuitive analysis of applications. We collect
detailed per-level and per-phase measurements for a dynamically
load-balanced, structured AMR library and project per-core
data collected in the hardware domain on to the application’s
communication topology. We show how our projections and
visualizations lead to a rapid diagnosis of and mitigation strategy
for a previously elusive scaling bottleneck in the library that is
hard to detect using conventional tools. Our new insights have
resulted in a 22% performance improvement for a 65,536-core
run of the AMR library on an IBM Blue Gene/P system.

I. INTRODUCTION

As the size and complexity of modern architectures in-
creases, performance analysis of massively parallel scientific
applications becomes ever more crucial in order to ensure
efficient scaling of these codes. While there exist a number of
tools and frameworks to collect a large variety of performance
data in the form of profiles or traces, interpreting this massive
amount of information is rapidly becoming the bottleneck of
any analysis. One of the main reasons is that often no individ-
ual measurement contains sufficient information to detect, let
alone diagnose, most problems. Instead, application developers
are forced to manually collect and correlate disparate pieces
of information to gain the necessary insights. This strategy
is becoming infeasible especially for large core counts and
adaptive applications. The former makes most standard plots
incomprehensible while the latter significantly reduces the
ability of users to relate individual measurements to each other.

In an application that has a static data distribution, for
example a regular grid code, the relationship between MPI
ranks, nodes, cores, and the application domain remains fixed
throughout the execution. This makes it possible for an appli-
cation developer to connect, with significant effort in most
cases, individual measurements – for example, flop counts
taken per core with a particular subset of the simulation
domain. In an adaptive application, such as an adaptive mesh
refinement (AMR) code, however, these relations constantly
change during the execution leaving the user with few op-

tions to understand non-trivial performance problems. Further,
such applications may introduce an entirely different type of
computation related to creating, maintaining, and adapting the
simulated domain, which may become a scalability bottleneck
in itself.

To address these challenges, new types of performance
tools are necessary that can: (a) attribute performance mea-
surements to the relevant computational phases and dynamic
application data; and (b) automatically create and exploit
the necessary relationships between measurements recorded
on different domains. Schulz et al. recently codified these
concepts into the HAC model [1], aimed at understanding
the relationships between static Application domains, HPC
Hardware, and inter-process Communication. In this paper, we
expand on these concepts and apply them to the understanding
of and exploiting such relationships for performance analysis
of dynamically decomposed application domains.

As a case study, we focus on a massively parallel AMR
library and first show how even detailed measurements of
various performance aspects of the application fail to highlight
the root cause of a performance problem. We propose a new
projection of data collected in the hardware domain on to the
communication graph as well as a new scalable visualization
of the resulting coalesced information. This provides an easily
apparent and intuitive diagnosis and also suggests a simple
strategy to alleviate the problem. Specifically, the new contri-
butions described here include the following:

1) Detailed per-level and per-phase performance measure-
ments of a massively parallel structured AMR code;

2) A new projection of the per-phase and per-core data onto
the communication domain;

3) A new scalable visualization technique that combines
hardware and communication data providing an intuitive
diagnosis of an elusive scalability problem; and

4) A mitigation strategy which improves the performance
of the AMR library by 22% for a 65,536 core run on a
Blue Gene/P system.

This paper shows that carefully measuring, attributing, and
integrating various performance data can lead to simple diag-
noses of previously obscure problems. As a case study we use
SAMRAI [2], [3], a highly scalable structured AMR library
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Fig. 1. Visualization of the binary tree shaped virtual communication topology used in SAMRAI’s load balancing phase for 16,384 cores. Warmer colors
(as one moves up the scale) represent higher values of load or time. (a) Nodes colored by load before load balancing: No imbalances are obvious. However,
there are minor differences with the two top trees being slightly overloaded. (b) Nodes colored by times spent waiting to receive excess load. (c) The tree
of (b) with arrows scaled by the number of boxes sent across, highlighting the problem. The tree structure of the SAMRAI load balancing scheme acts as a
funnel with most excess being forced along a single edge causing a linear amount of processing.

used extensively in several large-scale computational science
applications. An elusive scalability problem was reported in
SAMRAI, known to arise from the load balancing phase of
the application.

SAMRAI uses a binary tree shaped virtual topology for
communication during load balancing and hence, it is im-
portant to analyze all collected data in the context of this
communication structure. As shown in Fig. 1(a) the tree shows
a seemingly insignificant load imbalance which is concentrated
in one of its four quadrants. However, the times spent waiting
to address this imbalance (Fig. 1(b)) reveal a specific pattern
to the performance problem. Finally, including the amount
of meta-information moved (Fig. 1(c)) clearly shows the
problem: a linear number of elements must travel over just
one edge of the tree ultimately causing a linear scaling of
the code. Note that, as will be discussed in detail below, this
is neither a latency (the number of hops messages travel is
provably scaling as log) nor a bandwidth problem (the size
of messages is small), which made it difficult to diagnose
with traditional techniques. These insights have allowed us
to propose a mitigation strategy that has resulted in a 22%
overall performance improvement for a 65,536-core run on a
Blue Gene/P system. Further, the detailed analysis will enable
us to redesign the load balancing algorithm to remove the
scalability problem completely in the future.

II. PROJECTING DATA ACROSS DOMAINS

Schulz et al. have developed a taxonomy of performance
data that divides measurements into three key domains [1].
These are the hardware domain, consisting of processors
embedded in a network with some topology; the applica-
tion domain, consisting of information from the application’s
simulated physical domain; and the communication domain,
consisting of abstract graphs with processes as nodes and
communication between them represented as edges. This
framework is called the HAC model (see Fig. 2).

Application Domain
(Physical simulation space)

Hardware Domain
(Flops, cache misses, 
network topology)

Communication 
Domain

(Virtual topology)

Data 
Analysis and 
Visualization

Fig. 2. The HAC model: Data used for performance analysis is divided
into three domains. New visualization and analysis techniques that project
data between these domains correlate problem symptoms in one domain to
behavior in another, making it easier and more efficient to determine the
problem origin.

While symptoms may show up in any of these domains, the
actual root causes could lie in any other. We therefore need
new techniques for visualizing and analyzing performance data
that correlate symptoms to causes by projecting performance
data from one domain to another in order to make correlations
and root causes more clear.

The difficulty of projecting data across domains depends on
how much and how frequently the relationships between do-
mains change. For example, in a statically decomposed, struc-
tured grid application, the domain decomposition is fixed, and
we can assume that per-process measurements are associated
with a particular chunk of the decomposed application domain.
In dynamic applications, which will get more commonplace
as we move to more complex architectures and massively
parallel applications, this is no longer the case. For example,
in an AMR code, the physical domain is decomposed into
variable sized units, which can be moved dynamically from
process to process. We must therefore take special care to



track the units as they move around the system in order to
detect a performance problem that arises because of particular
application features in one part of the application domain.

Similarly, for a structured grid code, most communication is
regular. For example, many such codes use a simple stencil-
patterned ghost exchange among neighboring processes. We
can easily make assumptions about which processes commu-
nicate and how much data passes over each communication
link. However, if there are many phases with very different
communication patterns, we cannot attribute all bandwidth to
the same algorithm. Instead we must provide a more fine-
grained analysis that can distinguish phases and track many
independent communication patterns.

In adaptive applications like AMR, this kind of dynamic be-
havior is driven by the application, its domain decomposition,
and its phase structure. The behavior also changes depending
on the particular problem being simulated. Performance mea-
surement tools must therefore be able to map performance
measurements pertaining to communication and computation
back to entities in the application domain in order to find the
root causes of performance problems.

In the remainder of this paper, we describe how we have
constructed inter-domain projections that track these relation-
ships to unscramble the mess left by adaptivity. We use these
projections to create new, insightful visualizations in more
intuitive domains that clearly highlight root causes of the
performance problems.

III. STRUCTURED ADAPTIVE MESH REFINEMENT

In this paper, we study an application domain that is com-
plex and difficult to scale. Structured adaptive mesh refinement
(SAMR) is a popular AMR technique in which the simulation
domain is described by a hierarchy of successively finer mesh
levels, as shown in Fig. 3. The bottom-most level spans the
entire problem domain and its mesh is composed of the largest
cells. Meshes in successively higher levels have increasing
cell resolution but typically do not cover the entire domain.
Instead, higher levels comprise a set of boxes that contain only
cells in need of refinement. For data-parallel implementations
the mesh is distributed by assigning one or more boxes to
each process, if necessary splitting larger boxes to achieve
the necessary granularity. Standard SAMR applications consist
of three operations: local computation on individual boxes,
coordinated data exchange between neighboring/overlapping
boxes, and mesh adaptation which includes load balancing.

In this paper, we focus on the mesh adaptation and load
balancing phase in the AMR library. The advantage of an
AMR approach is that the mesh resolution can be locally
adapted to the requirements of the underlying simulations
which greatly reduces the overall workload. However, to
maintain this property the mesh must be constantly adapted
and redistributed to ensure an evenly balanced workload. This
step is, by its nature, a communication intensive and thus,
expensive operation, and typically the most difficult to scale.

Each time a mesh level is created/adapted, the next coarser
level is examined to decide the new set of boxes/cells on this

Fig. 3. A simple two-dimensional structured AMR mesh with three levels of
refinement (left). The same mesh is shown as a hierarchy on the right. Cells
that are refined are shown in gray.

level. Subsequently, these boxes must be distributed evenly
among all processors to ensure a balanced computational
load. Finally, the overlap and neighborhood relations between
boxes must be updated to enable the data exchange during
the computation stage. Since each process needs at least one
box, a naive re-meshing approach will scale as O(P ) for both
strong and weak scaling, where P is the number of processors.
Consequently, re-meshing can quickly become the dominant
cost at larger core counts.

A. SAMRAI
SAMRAI [2] is a highly scalable structured AMR library

used extensively in several large-scale DOE production appli-
cations. As discussed below, SAMRAI uses a parallel mesh
management that greatly reduces the cost of re-meshing [4].
Nevertheless, the scaling behavior for very large core counts
remains a challenge. Fig. 4 shows the current performance of
the LinAdv benchmark from the SAMRAI distribution, which
simulates a sinusoidal wave passing through the domain. In
this test case, we are using three mesh levels with a refinement
ratio of two and running on the Blue Gene/P system at
Argonne National Laboratory (Intrepid). Intrepid is a 557.1
TFlop/s Blue Gene machine with 163,840 PPC450 cores and
a three-dimensional torus interconnect.
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Fig. 4. Weak scaling performance of SAMRAI for the linear advection
benchmark on Blue Gene/P. Mesh adaptation dominates for larger core counts
where load balancing becomes problematic.

The figure shows the timings for the entire computation
(black), the mesh adaptation (dashed red), and just the load



balancing phase (dotted green) of the adaptation stage for
weak scaling. Beyond 8, 192 cores, the mesh adaptation starts
to dominate and in particular the load balancing appears
problematic. This represents a serious scaling problem, as
large-scale runs will not achieve good parallel efficiency if
most of their time is spent in re-meshing.

In the following, we describe the current load balancing
algorithm of SAMRAI before discussing various strategies to
diagnose its scaling bottleneck.

B. Load balancing in SAMRAI

Load balancing in SAMRAI starts from a set of boxes de-
scribing the new level. These boxes are created locally on each
processor from the existing coarser level without regard to load
distribution and thus are likely to be unevenly distributed. In
the load balancing stage, SAMRAI attempts to re-distribute
and/or split boxes in a way that ultimately balances the total
number of grid cells given to each process. Load balancing is
performed in three phases: First, the load distribution phase
computes the relative load with respect to the average on
each processor and distributes boxes accordingly. Second, the
mapping phase constructs the relation between pre-distribution
and post-distribution boxes. Third, the overlap phase recon-
structs the information about the overlap of post-distribution
boxes with the next coarser level. All three phases operate
exclusively on meta-data i.e. on the extents and locations as
well as the IDs of boxes rather than their actual data. Even
for the largest runs, the resulting messages are smaller than
the latency-bandwidth product for Blue Gene/P.

Load distribution. The load distribution algorithm is based
on a recursive traversal of a binary tree aimed at limiting the
“distance” each box has to travel. Once the average global
load has been computed with a global reduction, processes are
arranged into a balanced binary tree by recursively splitting
the MPI rank space. Then, each processor waits for its two
children to report their respective deficit or surplus of work.
In the case of a surplus, this message also contains the excess
boxes. The processor integrates this work in to its own load
and recursively reports the aggregated deficit or surplus to
its parent along with potential excess boxes. This recursion
naturally stops at the root where, by definition, all loads will
balance. Note that at this stage, there can still be processes
other than the root with excess boxes that have not yet been
distributed to their children. In the last step, the recursion is
inverted: The root sends its excess boxes to its children with
deficits, which recursively integrate the extra boxes with their
local excess and send the results to the respective sub-trees.

This algorithm guarantees that no box takes more than
O(logP ) steps along the tree and all nodes in the tree send
at most two messages: one to report their aggregated load
and one to potentially distribute excess boxes. Further, the
algorithm involves two potential MPI Waitall’s: one to wait
for updates from child nodes in the tree and, if necessary, a
second one to receive boxes from the parent node.

Mapping. At some point data must be transferred from

the pre-adaptation mesh to the post-adaptation version. This
requires a mapping from each of the new boxes on level k to
one or multiple boxes of level k and/or k − 1 from which to
copy and/or compute the corresponding data. During the load
distribution phase, each box is tagged with its originating pro-
cess and boxes that are split inherit their origin. In the mapping
phase, each destination processor informs the corresponding
originating processor about the final destination of its boxes.

Overlap generation. Finally, all boxes on the new level
must update their neighborhood and overlap information. This
entails computing which boxes on the same level share a
boundary, which boxes on higher/lower levels overlap, and
which processor now owns the corresponding box. To avoid
a global search for overlaps, SAMRAI uses the information
from the pre-adaptation mesh combined with the mapping
information of the previous phase to update the meta-data.

One or more of these three load balancing phases is re-
sponsible for the scalability problems that we see in Fig. 4.
In the next section, we describe several traditional techniques
aimed at diagnosing the problem, why they failed, and our
new techniques to illustrate and address the root cause.

IV. USING STATE-OF-THE-ART PERFORMANCE ANALYSIS

A variety of tools exist that help users and library developers
to gather and analyze performance data. However, most tools
are restricted to analyzing the data in the context in which
it was collected which is often not sufficient to diagnose
complex problems. A prime example is per-process mea-
surements which for convenience are typically collected with
respect to the MPI rank space. However, especially in adaptive
applications, the rank space has few obvious connections to
either the underlying hardware or the application domain,
which makes interpreting such data difficult. Also, most tools
have no or limited support for dynamic applications, such as
structured AMR.

Following the discussion of Section III, the dominant scal-
ing problem of SAMRAI appears to be in the load-balancing
phase. However, given the complexity of the algorithm the
root cause and thus a potential solution remains unclear. In
the following sections, we discuss the use of several common
performance tools and methodologies aimed at finding the root
cause and their shortcomings for this particular problem.

A. Aggregate profiles and information

The first attempts at diagnosing a performance problem
are typically globally aggregated measurements, the coarsest
of which are simple overall execution times as those of
Fig. 4. While such plots demonstrate that a problem exists
and in which portion of the code it manifests, they provide
little insight into a solution. The next step is to provide a
rough understanding of whether the problem is related to
communication or computation. By design the load balancing
algorithm guarantees a logarithmic number of hops for all
messages ruling out a latency issue. Similarly, since only
meta-data is transmitted during the load balancing stage, the
maximal message size remains below the latency-bandwidth



product of Blue Gene/P, even for the largest runs, which
argues against a bandwidth limitation. This leaves potential
contention on the network as a possible issue. Tools such as the
communication matrix module in PNMPI [5] (which we used),
TAU [6], and Vampir [7] allow one to record the complete
communication matrix showing traffic between all node pairs.
However, a matrix plot of the communication matrix, as shown
in Fig. 5, reveals no obvious patterns. Further, since the load
balancing algorithm sends only few point-to-point messages
contention seems unlikely.

Fig. 5. Communication matrix of 256 processes during the load balancing
phase of SAMRAI, color mapped by the number of bytes exchanged.

B. Per-phase data

Going beyond aggregated results in the form of global exe-
cution times or the communication matrix, profiling tools can
obtain detailed information about the time spent in computa-
tion and communication on each process. Many tools offer the
ability to obtain MPI profiles, including Open|SpeedShop [8],
TAU [6], and Scalasca [9]. For the following experiments, we
used mpiP [10], which provides information such as total time
spent in MPI calls versus total application time and also the
top MPI calls and their respective call sites where most of
the time was spent. mpiP can be used to selectively profile
a code region, and as most tools, it relies on the use of
MPI_Pcontrol calls for this feature. In our case, we use it
to focus on the details of the three phases of the load balancing
algorithm with the intent to assign blame to specific phases.

However, a common drawback of the MPI_Pcontrol
mechanism is that we can only turn profiling on or off in
mpiP. There is no mechanism to generate distinct profiles for
different code regions within a single run without significant
and complex changes to the profiler itself. We use PNMPI [11]
to virtualize mpiP so that multiple code regions can be profiled
at once, using multiple, unmodified instances of mpiP.

Fig. 6 shows the sum of times spent by all MPI processes in
the three phases of load balancing: load distribution, mapping,

and overlap generation for different core counts. From the
aggregated data it appears that the overlap generation (phase
3) is the main problem. However, as discussed in Section III,
load balancing is done in an asynchronous manner which may
distort the results when one processor waits in a later phase
for other processors to finish an earlier phase.
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Fig. 6. Sum of times spent by all MPI processes in different load balancing
sub-phases. This plot seems to indicate that phase 3, overlap generation, is the
main problem. However, due to the asynchronous fashion in which SAMRAI
does load balancing, processors in a later phase may be waiting on processors
which have not finished an earlier one.

C. Per-core, per-phase data

Since the per-phase data of Fig. 6 is inconclusive, the next
step is to further refine the attribution and analyze the MPI
profiles on a per-core as well as a per-phase basis. This
is typically the finest scale data the tools discussed above
provide. Fig. 7 shows this data with respect to the MPI rank
space for a small 256 core run of SAMRAI. It is apparent that
some processes indeed spend significant time in phase 1 of
load balancing thus likely causing long waits in other phases.
However, since the rank order is not immediately related to
the underlying dependencies, the cause of this anomaly is still
unclear. Furthermore, this graph is for a small test case which
may or may not actually exhibit the same behavior as large
scale runs. Indeed, as will be discussed in Section V, this plot
includes several artifacts of the same magnitude as the problem
we are trying to detect. Unfortunately, creating similar graphs
for much larger core counts is futile as one would no longer be
able to distinguish neighboring ranks for the lack of resolution.

Additional performance data can be gathered through trace
visualization tools, such as Vampir [7] or JumpShot [12],
but the resulting data is often overwhelming in its detail
and hard to interpret when looking for general patterns. A
hybrid approach between full tracing and profiling is call path
tracing [13], which provides and visualizes per process traces
of sampled call paths. However, this technique is limited to
MPI rank space and does not work well for adaptive codes.

Tallent et al. have investigated automatic discovery of scal-
ability bottlenecks at particular phases of program execution,
also based on call paths [14]. This work complements our
work by providing automatic detection of the initial scalability
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bottleneck we noticed in the SAMRAI load balancer. Again,
though, this work only supports visualizations of how the
observed data relates to the application source code, and not
how it relates to application semantics.

Finally, many existing parallel performance tracing frame-
works [7], [9], [15], [16], [17] attempt to visualize the behavior
of large-scale parallel programs, either by visualizing commu-
nication between processes, by visualizing hardware metrics
on a torus, or by examining communication traces using
three-dimensional views. None of these, however, support
the projection of application data into performance domains
or vice versa, limiting their ability to pinpoint performance
bottlenecks through the kind of correlation analysis presented
in this paper.

Overall, these state of the art tools provide valuable insight
by identifying the phase causing the scalability bottlenecks,
but fall short of helping to explain why. The presented data
is not tied to the application domain and its communication
structure nor does it help track the adaptivity in the application.
Data is typically presented relative to the context it was
collected in and hence the interpretation of the data changes
as the application progresses, making it hard to understand the
underlying relationships.

V. GAINING NEW INSIGHT THROUGH PROJECTIONS

The fundamental challenge for the techniques discussed
above is the tight connection of the data collected with the
domain it is collected on. In this case, the MPI rank space
is non-intuitive and to interpret the data one must explore a
more relevant context. Following the HAC model introduced in
Section II, we map the data gathered into two related domains,
the hardware domain, showing projections on the physical
hardware layout, and the communication domain, allowing a
natural interpretation of performance data in relation to the
application’s communication patterns. Incidentally, the latter
also maps performance data into a “stable” domain whose

semantics and interpretation are not affected by the adaptive
nature of the application.

A. Projections on the hardware domain

We use the timing information collected from mpiP for
phase 1 of load balancing (as shown in Fig. 7) and project
it onto the 3D torus of Blue Gene/P, the hardware the data
was collected on. Using Boxfish, a lightweight, interactive
visualization tool we have developed [18], we display an
abstract representation of the cores, nodes, and the hardware
interconnect colored according to the data of interest.

Fig. 8. Boxfish showing 256 nodes in a 8× 4× 8 torus colored by the time
spent in phase 1 (load distribution) of load balancing. We observe processes
in the third and fourth planes spend the most time in this phase and infer they
are waiting. This grouping suggests examining the virtual tree topology used
during load balancing.

Fig. 8 shows the view generated by Boxfish when we color
each node on the torus by the time processes spent in phase
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Fig. 9. Phase timing data and load information visualized in the communication domain, showing the virtual tree network of the load balancing phase (512
processes on Blue Gene/P). Nodes are aggregated at deeper levels and colored by their average weight. (a) Nodes colored by times spent waiting to receive
excess load. (b) Nodes colored by the load before load balancing. (c) The tree of (a) with arrows scaled by the number of elements sent between nodes. This
highlights the heavy use of few links which leads to increased wait times at the receiving nodes.

1 of load balancing. It appears that the processes that spend
the most time in this phase are on the third and fourth planes
of the torus. Hot planes like this may indicate contention, but
as discussed above, the communication matrix is sparse and
messages are small, thus it is more likely that nodes on these
planes are waiting for other nodes.

Given the strong correlation, some connection to the scal-
ing bottleneck seems probable which leads naturally to the
analysis of the virtual communication topology used during
load balancing. Since SAMRAI uses a recursive subdivision
of the MPI rank space, the next hypothesis is that the plane
represents a sub-tree of the virtual binary tree topology. To test
this theory, we project the same information on to a layout of
the virtual binary tree topology which provides a clear and
intuitive explanation.

B. Projections on the communication domain
As described in detail in Section III-B, SAMRAI com-

municates load variations and actual loads (boxes) along a
virtual binary tree topology. To understand the communication
behavior, we need to go a step further and project phase timing
data onto the communication domain, i.e., the load balancing
tree. This will ultimately allow us to connect the performance
data to the critical application behavior and its communication
pattern, and to overcome its adaptivity, since the structure and
type of the information stays constant across load balancing
steps. Fig. 9 shows the binary tree used by SAMRAI during
the load balancing phase. We draw the tree in a hierarchical
radial layout which emphasizes levels closer to the root and
clusters nodes of similar behavior on lower levels.

Fig. 9(a) shows the virtual tree network used in the load
balancing phase with each node colored by the time the
corresponding MPI process spends in phase 1, i.e., load
distribution. Interestingly, in this view, we see that a particular
sub-tree in the virtual topology or communication graph is
colored in orange/red, highlighting the processes that spend

the most time in phase 1. Further, from the mpiP output, we
were able to ascertain that nearly 85% of this time is spent in
an MPI_Waitall, where a child is waiting to receive boxes
from its parent. The problem escalates as we go further down
this particular sub-tree, which is reflected in the increasing
color intensity, i.e., processes farther away from the root spend
a longer time in this phase.

This is somewhat surprising as a plot of the initial load
before load balancing (Fig. 9(b)) does not indicate that the load
distribution can cause such drastic differences in wait times.
The load appears to be randomly distributed with over- and
under-loaded nodes sprinkled through the entire tree. However,
a closer inspection reveals that on average three of the four
sub-trees on level two have 2.83, 2.87 and 3.1% excess load,
respectively while the lower left tree has a 9% load deficit.
This asymmetry explains the plot of Fig. 9(a): since excess
load from three quarters of the tree has to flow to the fourth
quarter, the latter lies at the end of a long dependency chain.

This leads directly to the final visualization in which we
draw arrows according to the number of boxes that are sent
over each link (Fig. 9(c)). To avoid confusion, we only
show the downward flow of excess boxes from parents to
child nodes. From this illustration, the cause of the scaling
bottleneck is clear: in case of even a small load imbalance
that is asymmetrically distributed, the binary tree can act as
a funnel forcing a large percentage of all boxes to flow on a
single or a small number of edges. Note that following the
discussion of Section IV, this is not a contention or local
bandwidth issue as the size of the overall message (even on
the hottest link) remains small. Instead, the problem is related
to the number of boxes that must be processed for shipping.

The problem becomes worse for larger number of cores
as the maximum number of boxes to be sent on a particular
edge continues to increase, as shown in Fig. 10. On 131, 072
cores, we send 56 times the number of boxes that we send



(a) (b)

Fig. 11. The virtual binary tree topology colored by wait times in phase 1 of load balancing for (a) 1024 cores and (b) 2048 cores. Arrow weights are
proportional to boxes sent between parent and child. As core counts increase, the load imbalance moves further down the tree and large numbers of boxes
are routed through few edges, resulting in a flow problem.
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Fig. 10. Maximum number of boxes sent on any edge of the tree as a
function of the number of cores (on Blue Gene/P). The virtual binary tree
topology funnels a large portion of these messages through few links during
load balancing causing the scalability bottleneck.

on 256 cores on any given edge in the tree. This explains the
scalability bottleneck (attributed to the load balancing phase)
that we observed in Fig. 4. While the tree network that is
used for load balancing places an upper bound on the number
of hops a box may travel, it may funnel load from sub-trees
through sparse edges near the root. This makes the algorithm
susceptible to small variations in the initial distribution of load
and leads to a flow problem [19] where a large number of
boxes are routed through a single edge to replenish an under-
utilized sub-tree.

Fig. 11(a) shows the virtual tree topology with the wait

times in phase 1 and flow information for 1024 cores,
Fig. 11(b) for 2048 cores, and Fig. 1(c) for 16,384 cores. The
load imbalance moves progressively further down the tree but
the essential problem remains the same. Fig. 12 shows the data
of Fig. 7 and indicates why any analysis based on such a small
run would be misleading: the run is too small for the scaling
bottleneck to dominate which results in an inconclusive picture
of the flow. Note how there exist several heavily used edges
in the tree of Fig. 12 not related to the fundamental problem.

To preserve the symmetry of the tree layout and provide the
most direct visual link with the mental picture of a binary tree,
we chose to refine all sub-trees to an equal depth. However,
in cases where the problem exists far away from the root
we provide an adaptively refined layout (see Fig. 13) which
enables us to highlight flow problems at any level of the
tree. In the adaptive layout, we re-scale the angle assigned to
the sub-trees by their accumulated weights (wait time in this
case) and refine until the variance with each sub-tree is below
a given threshold. This illustrates that such visualizations
of the binary tree communication topology are scalable and
can be used for visualizing a large number of processes and
identifying performance problems even if they are not in the
first few levels of the tree.

VI. TURNING INSIGHT INTO OPTIMIZATION

The insight gained by interpreting the performance data
in the communication domain directly points to the core
problem: scalability in the load balancing phase is restricted
by a flow problem in the virtual tree topology. If a particular



Fig. 12. The wait times for phase 1 (load distribution) and flow information
for the 256 core run shown in Fig. 7. There exist several heavily used edges
not directly related to the scaling bottleneck including the heaviest edge on
the top right. This makes any analysis based solely on this data difficult at
best and inconclusive at worst.

Fig. 13. An adaptively refined layout of the tree for 1024 cores. We apportion
the angles based on the overall weights of the sub-tree and refine heavier trees
to deeper levels. Adaptively refined layouts enable us to examine problem
regions at any level of the tree.

sub-tree needs to receive load from the remaining sub-trees,
the corresponding traffic (in terms of meta-data for boxes)
must flow through one particular edge in the load distribution
phase. We understand that to ultimately eliminate this problem,
we must deploy a different virtual topology that prevents this
scenario and we plan to rewrite the load balancers in SAMRAI
based on the results presented in this paper.

However, the results also lead to a series of initial steps
aimed at mitigating the problem without rewriting the whole
algorithm. The goal is to reduce the amount of data sent around
the tree in two different ways. Part of the data sent with each
box is a history of where the box has been. SAMRAI uses this
in the mapping generation phase to send data back to the box’s
originating process along the tree. We changed the algorithm
to send the data directly to the originator instead of through
the binary tree structure which reduces the number of hops
and eliminates the need for the extra data per box.

This “direct send modification” leads to a reduction in the
load balancing time (as shown in Fig. 14). Compared to the
old scheme, using direct sends results in a 21% performance
improvement at 256 cores and 36% at 65,536 cores. This
reduction in the time for load balancing leads to an improve-
ment in the overall execution time per iteration (solving plus
adaptation) by 6%.
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Fig. 14. Reduction in load balancing time by sending patches directly to
their new destinations rather than through the binary tree.

As a second step, we target the reduction of the number of
boxes being sent by increasing the size of each box in terms of
the number of cells it holds. Increasing this size has the effect
of including more untagged cells in the level generated. It also
reduces the choices the load balancer has when breaking up
a box. The default value for the box size is (5, 5, 5) cells.
We ran experiments with three larger box sizes and recorded
the maximum number of boxes sent on any edge along with
the timing information. Fig. 15 presents the reduction in the
maximum number of boxes sent along any edge of the tree. We
get better results as we continue to increase the box size. On
65,536 cores, using (7, 7, 7) boxes, roughly half the number
of boxes are sent on any given link. There are 18 times fewer
boxes when the box size is changed to (9, 9, 9) cells.

Changing the box size leads to a reduction in the amount of
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Fig. 15. Reduction in maximum number of boxes sent on any edge of the
tree by increasing the size of each box.

traffic on the virtual binary tree topology, which translates into
a reduction of the time spent in load balancing (see Fig. 16).
Compared to the default box size, using (7, 7, 7) boxes, load
balancing is completed in nearly half the time on 65,536 cores.
This time is decreased even further with larger boxes for large
core counts. In spite of the increased computation resulting
from having more cells per box, increasing the box size still
leads to a reduction in overall time per iteration (spent in
solving plus adaptation). This might be due to lower overheads
from handling fewer boxes during the solving phase. At 65,536
cores, we get a performance benefit of more than 16% by
creating slightly larger boxes. Comparing with the baseline
performance, using the two optimizations together gives a
performance benefit of 25% on 256 cores and nearly 22%
on 65,536 cores in the overall runtime (Fig. 17).
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VII. SUMMARY

In this paper, we built upon the HAC model and applied it to
the understanding of and exploiting inter-domain relationships
for performance analysis of dynamically decomposed applica-
tions. We focused on SAMRAI as our case study and proposed
a new projection of data collected in the hardware domain
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Fig. 17. Improvement in overall (solving plus adaptation) time by using
larger, and thus creating fewer boxes.

on to the communication graph as well as a new scalable
visualization of the resulting coalesced information. Using
these projections led to a rapid diagnosis of and mitigation
strategy for a previously elusive scaling bottleneck in the
library that is hard to detect using conventional tools. Our
new insights resulted in a 22% performance improvement for a
65,536-core run of SAMRAI on Blue Gene/P. We understand
that to ultimately eliminate this problem, we must deploy a
different virtual topology that prevents this scenario and we
plan to rewrite the load balancers in SAMRAI based on the
results presented in this paper.

We believe that the process of creating projections outlined
in this paper and the visualization techniques presented are
generally applicable and especially useful for adaptive scien-
tific codes. The scalable tree visualizations can be used to
identify hot-spots or scalability problems at any level of the
tree. Generalizing these visualizations of the communication
domain to arbitrary graphs requires feature finding to coalesce
uninteresting nodes and focus on sub-domains that appear to
have potential performance problems.
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