
Supplemental Material for “Visualizing a Moving Target: A Design
Study on Task Parallel Programs in the Presence of Evolving Data

and Concerns”
Katy Williams, Alex Bigelow, and Kate Isaacs

1 INTRODUCTION

We provide further detail on our collaborators involved with Atria’s
design and the participants in our evaluation. We then provide more
figures showing how Atria was used in practice and our evaluation
sessions.

2 COLLABORATORS AND PARTICIPANTS

R
un

tim
e

Te
am

Pe
rf

or
m

an
ce

A
na

ly
si

s
Te

am

G
at

ek
ee

pe
r

Fr
on

t-
lin

e
A

na
ly

st

Fe
llo

w
To

ol
B

ui
ld

er

E
va

lu
at

io
n

pa
rt

ic
ip

an
t

Pr
io

rf
am

ili
ar

ity

In
flu

en
ce

d
de

si
gn

D
ep

lo
ym

en
tu

se

PM • • • • • D1, D7
P1 • • • • • • D2
P2 • • • • • D1
R1 • • • • • • D1
R2 • • • • • • D5, D6
R3 • • • • • • D1
R4 • • • • • • D3
R5 • • • • •
R6 • • • • •
R7 • • • • • •
R8 • • • •
R9 • • • •

R10 • • • •
R11 • • • • • D4, D6

Fig. 1. Team members involved in design or evaluation and their roles.
Everyone had multiple roles, acted as a front-line analyst, and was a
fellow tool builder.

The Phylanx project is divided into three teams: the Runtime Team,
the Performance Analysis Team, and the Visualization Team. The Run-
time Team is the largest with a principal investigator (PI), local project
manager, several scientists, and student researchers. The Performance
Analysis and Visualization teams each had a PI, student, and a scientist.

Each team resides at a different institution and time zone. In-person
meetings occurred a few times a year, usually at the Runtime Team’s
institution or the Supercomputing conference. There were weekly
teleconferences with the team regarding all project goals (not only

• Katy Williams, Alex Bigelow, and Kate Isaacs are with the University of
Arizona. E-mails: kawilliams,alexrbigelow,kisaacs@email.arizona.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

visualization). Visualization-focused video conference meetings could
be scheduled on request, usually when the Visualization Team would
demonstrate new features (new design iterations).

Figure 1 lists all Runtime and Performance Analysis team members
who were involved in Atria’s design process, used Atria deployments,
or who were involved in evaluation sessions. The Phylanx program
manager is also listed.

Most non-student team members have formal training in computer
science or significant experience in scientific computing. Student team
members were enrolled in either engineering or computer science grad-
uate programs. Most team members, including the program and project
managers, contributed code to the project, with the exception of newer
students, such as R10, who were ramping up and new to the specific
technologies of the project.

3 DEPLOYMENTS

Atria was deployed in several different ways, with design variations
adapted to diverse, evolving needs.

Initially our data was output to the application’s standard out along
with other debug output. Users had to extract Atria-specific data from
the text dump manually. The first deployment (D1) was designed
to serve data piped from the command line for generic ad-hoc, as-
needed visualization. This deployment required users to clone and
keep updated their own version of Atria. This version has been used
extensively by R3, but also on occasion by P2 and R1. We also hosted
our own version with fixed data as a demonstration site to communicate
with the rest of the team. Additionally, PM originally used this version
sporadically as a communication tool to describe how Phylanx worked
to others outside the project.

A variant with a date selector was designed and deployed (D2) to
augment a series of nightly regression tests that P1 had generated, to
enable retroactive inspection, shown in Figure 2. Atria was then inte-
grated into the nightly regression reports, allowing users to examine the
previous night, any already collected regression data, or a comparison
between two dates.

Fig. 2. A view of the deployment created for retroactive inspection of
nightly regression tests (D2), including a calendar selector at the top-left.



To streamline the setup burden of D1, we created another deployment
(D3) which we hosted at visualization team’s institution. This version
allowed users to paste data from the standard out data dump into a text
area, shown in Figure 3. R3 used this version when heavily examining
one of the Phylanx applications, but as their work shifted from that
application, is not using it now. Around the same time, R11 requested
a self-contained, serverless HTML version of D1 with embedded data
(D4).

Fig. 3. A view of the deployment hosted at the authors’ institution, for
cases where ports can not be opened publicly (D3), including text areas
for pasting data.

At the request of the project manager, R2, we created a version with a
specific dataset to work with Jupyter Notebook (D5) for demonstrations
at the 2018 Supercomputing conference (SC18). This version contained
only the main tree view, no code view or tooltip. In addition to R2, we
also used this version, as well as D1, for demonstrations at SC18.

A persistent goal had been a more general Jupyter Notebook de-
ployment. Having overcome technological considerations to create the
SC18 demo, we iterated on the design, moving the code view and tool
tips, resulting in (D6), shown in Figure 5 in the paper. We incorporated
this version into a new demonstration notebook, both for the team mem-
bers who give general demonstrations (R2, PM) and as an example for
potential Phylanx users.

Finally, PM created a variant for use and demonstration at a secure
facility (D7). This version is undergoing review and could not be shared
with the authors.

4 ATRIA FIGURES FROM EVALUATIONS

At the start of each evaluation session, we introduced the participant to
Atria by walking them through a tree of a factorial code snippet, shown
in Figure 4. The familiarity of the code and the small size of the tree
made it a tractable example of Atria’s features.

After the factorial demonstration, we asked the user to perform a
series of tasks, as listed in Section 7.2.1. The single tree view is shown
in Figure 5.

For task L1 (“Find a primitive that takes a lot of time”) the expected
workflow was to visually scan for the nodes with the most saturated
color. To answer the follow-up questions (“How long does it take
without its children? With?”) the user needed to hover the mouse
over the node to read the tooltip, which displayed the exclusive time
(“without its children”) and the inclusive time (“with”).

In task L2 (“Find a primitive that is executed synchronously”) the
user visually scanned the tree for a node with a dashed border. There
are many instances of nodes with dashed borders in the tree so partici-
pants quickly found a correct node. Some participants had difficulty
distinguishing between the close-dashed and spaced-dashed lines.

Task L3 (“Find a primitive that is executed asynchronously”) was
similar to task L2. However, there was only one such node in this
example, so some participants had difficult finding this single node
with a solid border.

Task L4 (“Find a primitive that is repeated in the code”) required
more interaction with Atria besides simple visual scanning. Since the
yellow lines that connect repeated primitives are only visible when the
user hovers over the primitive, the users used their mouse to manually
scan over nodes in the tree and to discover if the primitive was reused.

Once the user completed tasks on a single tree, we presented them
with the comparison tree view, as show in Figure 6. We asked the user
to perform a series of tasks that focused on comparing two datasets, as
listed in Section 7.2.1.

For task C1 (“Which run was slower?”) the user visually scanned
the entire tree to collect information about the hue and saturation of the
nodes as a whole. A tree with more saturated purple nodes indicates
that the net change in time increased from the first run to the second
run, therefore the differences in the second code led to a faster run.
Likewise, a tree with more orange nodes indicates that the first run of
the code was faster than the second run.

We only presented task C1* to users with a performance analysis
background. This question (“Why might it have been slower?”) re-
quired the user to investigate highly saturated nodes of the slower run’s
color and reason about the primitive represented by the node.

Users accomplished task C2 (“Find a primitive that changed execu-
tion mode”) by visually scanning the tree for nodes with a pink border.
Most users confirmed their answer by reading the tooltip.



Fig. 4. A view of the demo tree we showed participant at the start of each Evaluation Session.

Fig. 5. A view of the single tree that participants used to perform our tasks during the evaluation sessions. The red boxes show a possible answer to
each question presented in the task. Each box is labeled with its corresponding task, as they are enumerated in Section 7.2.1 (Tasks L1 - L4).



Fig. 6. A view of the comparison tree that participants used to perform our tasks during the evaluation sessions. The red boxes show a possible
answer to each question presented in the task. Each box is labeled with its corresponding task, as they are enumerated in Section 7.2.1 (Tasks C1
and C2).


	Introduction
	Collaborators and Participants
	Deployments
	Atria Figures from Evaluations

