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Abstract—Performance analysis is critical for pinpointing
bottlenecks in applications. Many different profilers exist to
instrument parallel programs on HPC systems, however, there
is a lack of tools for analyzing such data programmatically.
Hatchet, an open-source Python library, can read profiling data
from several tools, and enables the user to perform a variety
of analyses on hierarchical performance data. In this paper,
we augment Hatchet to support new features: a syntax query
language for representing call path-related queries, visualizations
for displaying and interacting with the structured data, and
new operations for performing analysis on multiple datasets.
Additionally, we present performance optimizations in Hatchet’s
HPCToolkit reader and the unify operation to enable scalable
analysis of large profiles.

Index Terms—performance analysis, tool, parallel profile, call-
ing context tree, call graph, graph analytics

I. INTRODUCTION

Profilers measure code performance on HPC systems [1]–
[5], allowing users to identify performance and scalability
bottlenecks. Unfortunately, most profilers use their own unique
format for storing profiling data. As a result, users are bound
to the analysis tools provided by the profiling software. These
tools are typically GUI-based, and they do not allow the user
to analyze performance data programmatically. This ultimately
limits the kinds of analyses users can perform on their data.

One challenge of parallel performance analysis is attribut-
ing execution time to the code. Simple profilers collect the
execution time of individual functions or statements in the
code. More advanced profilers can distinguish time spent in
different call paths or calling contexts, such as an MPI_Bcast
called by a physics routine versus an MPI_Bcast called by
a solver library. Other profilers may attribute time to nodes
in a call graph, which aggregates the performance across all
occurrences. In all cases, profile data can represent code in
a variety of ways, and analyzing performance data can be a
tedious process.

Hatchet [6] is an open-source Python library that over-
comes these analysis constraints by enabling users to read
the hierarchical call graph data generated by different HPC
profilers into a canonical data model. Hatchet builds upon
a combination of the pandas Python library [7], [8] and
graph-based hierarchical data representations. After reading
the hierarchical call graph data into Hatchet, users can perform
a variety of Hatchet’s operations or they can perform their

own further analysis in Python. We continue to extend and
improve upon Hatchet’s techniques and operations, such as the
graph-based hierarchical data representations, to enable users
to perform deeper analyses of their parallel performance data.

The contributions of this paper are as follows:
• a description of Hatchet’s syntax query language and

an example case study analyzing performance variations
across MPI implementations;

• enhancements to Hatchet’s graph visualizations including
an interactive tree visualization;

• an overview of Hatchet’s new APIs providing deeper
analysis of structured data; and

• a performance study of Hatchet’s optimized APIs.

II. BACKGROUND

In this section, we describe the structured, hierarchical
performance data collected by different profiling tools, an
overview of two popular profiler tools in the HPC community,
as well as Hatchet’s data model.

A. Structured Performance Data

There are two methods for collecting execution profiles
for an application: sampling or source code instrumentation.
With sampling, a profiling tool (e.g., HPCToolkit) will collect
data at regular intervals as the program is executing. With
source code instrumentation, annotation code (e.g., Caliper)
is inserted directly into the application and data is collected
at each instrumentation point. The profile data may contain
both contextual information, such as the current line number,
file name, or call path, and performance metrics, such as the
number of instructions retired or the number of cache misses
since the previous sample. The execution profiles may vary
depending on how the data is aggregated (i.e., in graphs or
trees).

Call Graphs: Call graphs attribute data to the name of the
function rather than performing an analysis of the call stack
and determining the call path or calling context. In a call graph,
an edge connecting two nodes implies that one function called
the other, and the samples are averaged across all occurrences
regardless of where they originated. Call graphs are considered
a very concise representation of call paths, however, they lack
the context in which particular functions are called.



main

physics solvers

mpi

psm2

hypre mpi

psm2

(a) Hatchet’s GraphFrame data structure consists of a Graph (left)
and a pandas DataFrame object (right).

Frame: { function: ‘baz’,
             module: ‘libfoo.so’ }

Node 1 (key: 0xAB7FC4)

Frame: { function: ‘qux’,
             module: ‘libbar.so’ }

Node 2 (key: 0xCA19E4)

Frame: { function: ‘quux’,
             module: ‘libfoo.so’ }

Node 3 (key: 0xF6D5FA)

Frame: { loop: ‘grault’,
             module: ‘libbar.so’ }

Node 4 (key: 0x4E6CDA)

(b) The nodes in Hatchet’s Graph contain a Frame object, which
identifies the code construct it represents .

Fig. 1: Hatchet’s central data structure and data model.

Calling Context Trees (CCTs): A calling context tree is
a hierarchical structure storing the calling context of an
application. Each unique call of a function becomes a node
in the CCT, and a path from the root to any node in the graph
represents the calling context that led to that particular child
function. Because CCTs provide a more verbose representation
of call paths, they are useful for analyzing performance of
different hardware performance counters within the context of
how they were called.

B. Call Path Profiler Tools

There are many different profiler tools for identifying
performance bottlenecks. We provide an overview of two
common call path profiling tools below.

HPCToolkit: HPCToolkit [9] is a suite of tools for perfor-
mance measurement, analysis, and visualization. HPCToolkit
uses thread- and process-level sampling to measure different
hardware performance counters and attributes the value to the
full calling context in which they occur (recorded as a CCT).
The call path for a given node is determined by tracing the
path from that node to the root. The performance database
generated by HPCToolkit’s hpcprof or hpcprof-mpi tool
correlates the call path profiles with the application’s source
code. The resulting database includes a single XML-formatted
CCT (for all processes) and individual files containing the
process-level metrics for all nodes in the CCT.

Caliper: Caliper [2] is a general-purpose instrumentation and
profiling library for performance analysis. It provides an API
for annotating the application’s source code as well as a flexi-
ble data aggregation model [10] for online or offline analysis.
During execution, Caliper builds a generalized context tree
consisting of user-defined key-value pairs known as attributes.
The context information for any given node is derived by
collecting all attributes on the path from that node to the
root node. Caliper generates a hierarchical profile or CCT by
enabling the call path service or by using the source code
annotations. To generate Caliper’s JSON-split output format,

a user can run cali-query on the raw Caliper samples or
enable the hatchet-region-profile service.

C. An Overview of the Hatchet Library

The primary data structure in Hatchet is called a Graph-
Frame, which consists of two components: a Graph defining
the caller-callee relationships and a pandas DataFrame storing
the categorical and numerical data associated with each node.
Fig. 1a shows these two objects of a GraphFrame. Pandas [8],
[11] is an open-source library in Python providing data struc-
tures and manipulation tools for data analysis. Pandas is well-
suited for tabular data, making it a great option for storing
Hatchet’s data.

Hatchet introduces a canonical data model for representing
and indexing the performance data from execution profiles.
This structured index enables nodes in the structured graph
to be used as an index in the pandas DataFrame. Fig. 1b
illustrates that each node in the graph contains a Frame, which
identifies the code construct for that node. The frame for each
node is determined by the file format readers (e.g., HPCToolkit
reader, Caliper reader), and is a dictionary of key-value pairs.
The frame can classify the node type as a function/procedure
node, a loop node, or a statement node.

Hatchet provides readers for several input formats from pop-
ular profiling tools, such as HPCToolkit’s database directory
and Caliper’s json-split format. Additionally, Hatchet can read
data from the GraphViz DOT format or data stored in a list
of dictionaries. Once the data has been read into Hatchet,
a user can perform operations to select, filter, or aggregate
the GraphFrame. There are also operations that are applied to
a single GraphFrame (e.g., filter), while others are meant to
compare across GraphFrames (e.g., divide). In the following
sections, we present new features that have been added to
Hatchet since it was initially introduced in [6].

III. QUERY LANGUAGE

We design a query language that enables data reduction us-
ing call path pattern matching. We demonstrate the capabilities
of our augmented Hatchet by examining the performance of



Fig. 2: Example using Hatchet’s new query language to filter
a graph. Here, our query specifies a call path rooted at a node
named “solvers”, followed by a node with a time metric value
less than 50, followed by any number of children nodes. The
result is a subtree containing three nodes.

MPI calls in three High Performance Computing (HPC) bench-
marks (i.e., AMG2013 [12], Kripke [13], and Lammps [14])
when using MVAPICH and Spectrum-MPI. In doing so, we
identify hidden performance losses in specific MPI functions.

A. Design and Implementation

Previously, Hatchet did not provide a way to utilize the
relational caller-callee data collected by HPC profilers in
analysis, thus limiting the types of analysis a user can perform.
To leverage this data in analysis, we design a graph query
language that filters performance data through call path pattern
matching. Our query language is based on Cypher [15] and
GQL [16]. In our query language, users provide a query path
in the form of a list of abstract graph nodes. A node consists
of two elements: (1) a wildcard specifying the number of real
graph nodes to match to the abstract graph node and (2) a filter
determining whether a real graph node matches the abstract
graph node. We filter data graphs in three steps. First, we
match all real nodes in the graph to the abstract nodes in the
user-provided query path. Next, we collect an exhaustive list of
all paths in the graph that match the entire query path. Finally,
we use the exhaustive list to create a new graph containing
only the real nodes found in the list of matched paths. An
example of this is shown in Fig. 2.

Our query language consists of two API levels. The ”high-
level” API represents the query path as a Python list in which
each element is an abstract graph node. Filters in the high-
level API are represented as Python dictionaries keyed on the
attribute names of real nodes in the graph. The ”low-level”
API represents the query path as a set of chained function
calls in which each function call represents a single abstract
graph node. Filters in the low-level API are represented by
Python callables that accept a pandas Series representing a
row and return a boolean. In both API levels, we represent
wildcards as either a number or a regex-style wildcard string.

B. Case Study: Identifying Sources of Performance Losses

We evaluate the effectiveness of Hatchet once augmented
with our query language in identifying sources of performance
losses associated with MPI calls in three HPC benchmarks
(i.e., AMG2013 [12], Kripke [13], and Lammps [14]). We use
two different MPI libraries (i.e., MVAPICH and Spectrum-
MPI) with 64, 128, 256, and 512 ranks on LLNL’s Lassen
supercomputer. We profile all the benchmark runs using HPC-
Toolkit [5]. Because of our query language, we can extract
the subgraphs rooted at standard MPI function calls from
the generated profiles. Using the subgraphs we obtain, we
examine the percentage of the total MPI time spent in each
MPI function call. We also examine the percentage of total
MPI time spent in each child call of the MPI functions. Using
this data, we determine the MPI calls and children calls that are
most important to the performance of the benchmark running
with a particular MPI library.

In this paper, we only show results related to the
MPI_Allgather function in AMG2013 due to space con-
straints. Our reasons for this are two-fold. First, as shown
in Fig. 3a, MPI_Allgather clearly comprises the majority of
the MPI time spent in the AMG2013 benchmark. Second, the
AMG2013 benchmark has the largest performance difference
between MVAPICH and Spectrum-MPI. This suggests that, if
we can determine a likely primary cause for the performance
difference in MPI_Allgather between the two MPI libraries,
we can also determine the likely primary cause for the overall
performance difference between the libraries.

To determine a likely cause for the performance difference
in MPI_Allgather, we first use the query language to obtain
the subgraphs of the AMG2013 data rooted at MPI_Allgather
calls. We further reduce the data to consider only the children
calls of this MPI function that we previously identified in
Fig. 3b as most important to the performance of the program.
The results of this reduction are shown in Fig. 3c.

In our tests with MVAPICH and Spectrum-MPI, we deter-
mine that the pthread_spin_lock function is consistently a
major contributor to MPI runtime (i.e., 10% or more of the
MPI time, usually 20% or more). Additionally, when consider-
ing MPI_Allgather, we conclude that the worse performance
of Spectrum-MPI may be due to differences in its use of
pthread_spin_lock compared to MVAPICH. Overall, our
augmented Hatchet supports these new analysis capabilities:
extracting all call paths specific to a given library; deter-
mining the performance contributions of function calls used
internally in a library; correlating children function calls to
specific important library API calls in an application; using this
correlation to determine children function calls that contribute
the most to the performance of the targeted library API
call; and comparing the correlation of children and API calls
across libraries to determine possible causes for performance
differences in these libraries.

IV. VISUALIZATION ENHANCEMENTS

We improve both the Hatchet Jupyter-based and terminal-
based tree visualizations. Our Jupyter visualization now has
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MPI Function Calls
MPI_Allgather MPI_Waitall
MPI_Allreduce MPI_Finalize

Remaining MPI Time

Child Function Calls
<unknown file> [libmlx5.so.1.0.0]:1133 memset.S:1133
<unknown file> [libmlx5.so.1.0.0]:0 Geometry.h:0

pthread_spin_lock.c:26 malloc.c:0
stl_vector.h:0 Remaining MPI Time

Fig. 3: The percent of (a) total MPI time in AMG2013 spent in MPI functions, (b) total MPI time in AMG2013 spent in the
children calls of MPI functions, and (c) total MPI_Allgather time in AMG2013 spent in children calls. We focus on those
function calls that contribute 10% or more of the total MPI or MPI_Allgather time, and combine the time of all remaining
function calls into Remaining MPI Time. We denote the MVAPICH and Spectrum-MPI libraries by M and S, respectively.

several features that can be directly manipulated, with a key
addition of being able to select nodes visually and pass them
back to the scripting context. Both visualizations have refined
designs for readability.

A. Interactive Tree Visualization in Jupyter
A central design goal of Hatchet is easing analysis done

on calling context trees and other similar performance data
structures. While programmatic analysis is the main focus
of Hatchet, some operations may be easier to perform in an
interactive visual environment. We introduce an interactive tree
visualization for Jupyter, shown in Fig. 4. The visualization is
built using D3js [17] and Roundtrip [18].

The interactive tree permits selection of a single node on-
click or multiple nodes by brush (drawing a gray box). Selec-
tion of a group of nodes populates a table in the visualization
as shown in the upper right of Fig. 4. The dynamic table lists
all selected nodes and their associated data values. Selected
nodes are outlined with a thick black line.

Once a user has drawn a selection over multiple nodes,
the corresponding query can be accessed in any other Jupyter
cell using the Roundtrip fetchData operation. As shown in
Fig. 5, calling fetchData(mySelection) will return the
corresponding syntax query based on the selection, and stores
this into the mySelection Python variable. The variable is
then used to filter the data by the specified query, producing
the subtree that was selected in the interactive visualization.
With the interactive tree, users can visually select nodes that
can then be manipulated programmatically, allowing users to
combine interactive visual selection with scripting.

Additionally, the Jupyter tree visualization has several inter-
active controls for adjusting the display. Available data values
collected by node are available in the Color by drop down.
In Fig. 4, inclusive time is selected to be displayed via color.

When multiple trees are present, users can choose to display
them all or just one, using a unified color scale, or separate
ones. Color scales can also be inverted.

B. Tree Visualization in the Terminal
Hatchet provides its own visualization, whereby a string

can be printed to the terminal to display the graph. We have
redesigned the output and extended its functionality to provide
users with more customization over their visualizations. Ex-
amples of the current terminal output can be seen in Fig. 6. By
default, node names are printed alongside the specified metric,
such as exclusive or inclusive time. Users can specify depth
or precision to Hatchet’s terminal visualization to control
how many levels of the tree to output and how many digits of
precision to output in the metric values.

We also provide users with increased control over the
colormap. By default, the colormap annotates nodes with the
highest metric value in red and those with the lowest metric
values in green. In the case where a user computes the division
(or speedup) of two GraphFrames, a user may want to invert
the colormap, so that nodes with high speedup are anno-
tated in green, while nodes with low speedup are annotated
in red. Users can easily invert the colormap by specifying
invert_colormap=True. Additionally, Hatchet annotates
nodes that may only exist in one of two GraphFrames as
a result of a performing an arithmetic operation, such as
subtraction. As shown in Fig. 6, the graphs of the two
GraphFrames are structurally different, so we first unify the
graphs before computing the difference. Unifying the graphs
means that some nodes appeared in one GraphFrame, but not
the other, and vice versa. We annotate those nodes with a red
left arrow to indicate the node exists only in the left graph
or a green right arrow to indicate the node only exists in the
right.



Fig. 4: An example tree rendered using our interactive tree visualization in Jupyter. The user has drawn a gray box to select the corge
subtree. Details of the selected nodes are shown in the upper right. This selection can be accessed in other Jupyter cells using the fetchData
operation. Additional controls allow adjusting the color scale, changing the trees displayed, and changing the data displayed.

co r g e

b a r g r au l t ga rp ly

baz g r au l t

1 %fetchData mySelection
2 filter_squash_gf = gf.filter(mySelection)

Fig. 5: Example demonstrating how the query (translated
from a user’s selection on the interactive tree) can be applied
programmatically to filter the tree.

V. API IMPROVEMENTS

We describe four GraphFrame APIs (i.e., filter,
groupby aggregate, mul, and div) that have been added
to the Hatchet package since its initial release. The first
two APIs operate on a single GraphFrame, while the latter
two APIs operate on two GraphFrames. All of the operators
enable deeper analysis of structured data and allow structured
data to be manipulated in different ways.

filter: The existing filter operation takes a user-supplied func-
tion and applies that to all rows in the DataFrame. As an
example, the filter function may be to keep all rows that have a
time value greater than some threshold. The filter function has
been extended to support taking a user-defined query path to
filter the graph using the caller-callee relational data. Hatchet’s

Fig. 6: Terminal-output tree visualizations for a subtraction of
two GraphFrames in Hatchet (result graph on the bottom). For
any node that only exists in one of the two graphs, its node
will be annotated with a green or red arrow in the result graph.
Here, the two baz nodes exist only in the right graph, and are
annotated with a green arrow. The garply node exists only
in the left graph, and is annotated with a red arrow.

new syntax query language is described in more detail in
Section III. The resulting Series or DataFrame is used to filter
the DataFrame to only match rows that are true. By default,
filter performs a squash on the graph to remove nodes that
are no longer in the DataFrame. The graph is rewired such
that the nearest remaining ancestor is connected to the nearest
remaining child on the path for all call paths.
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1 gf = GraphFrame( ... )
2 groupby_func = ["module"]
3 agg_func = {"time": np.sum, "time (inc)": np.sum}
4 res = gf.groupby_aggregate(groupby_func, agg_func)

Fig. 7: Groupby-aggregate operation applied to a single Graph-
Frame. The bottom figures show the resulting module-level
graph and associated dataframe.

groupby aggregate: The groupby and aggregate operation
takes a user-defined group and an aggregation function, and
produces a re-organized DataFrame. By default, Hatchet’s
DataFrame is grouped by nodes. This operation is useful
for aggregating the data into alternative groups for different
analyses. As an example, users may want to look at the
performance attributed to modules or function names (instead
of nodes), and aggregate the data values accordingly.

As part of the groupby and aggregate operation, the graph
is also reindexed to match the new groups in the DataFrame.
For each group, the reindex phase merges all nodes belonging
to the group into a single supernode. When a node is merged
into a supernode, any of its edges to a parent or child are
created as edges in the new supernode. For each supernode,
we create a new node in Hatchet with the corresponding name
and group, and use this as the index in the DataFrame. The
groupby_aggregate returns a new GraphFrame with a
reindexed graph and a grouped-aggregated DataFrame. Fig. 7
shows the graph before and after a groupby-aggregate is
performed, specifying module as the new group.

mul: The multiplication (*) operation assumes the graphs in
two GraphFrames are structurally equivalent and computes the
element-wise multiplication of the corresponding DataFrames.
If the graphs are not the same, then unify is applied first to
create a single unioned graph. The DataFrames are reindexed
by the unioned graph. The multiplication operation returns a
new GraphFrame with the unioned graph and the result of
multiplying the elements in the DataFrames. The multiplica-
tion operator can also be used in-place (a∗ = b) to update an
existing GraphFrame.

div: The division (/) operation requires that the two graphs
have the same structure. If this is true, then the divi-

sion operator computes the element-wise division of two
DataFrames. Otherwise, it first unifies the graphs and reindexes
the DataFrames before performing the division. The division
operation either returns a new GraphFrame or updates the
GraphFrame in-place if the in-place division operator (a/ = b)
is used.

VI. PERFORMANCE IMPROVEMENTS

Performance improvements in Hatchet aim to support large
profiles collected from massively parallel programs. These
efforts target two critical functions in Hatchet: HPCToolkit
reader and unify. We detail the optimization process and
the results of these efforts in the following subsections.

A. Analysis Infrastructure

To enable performance analysis of Hatchet, we developed a
custom-made cProfile [19] wrapper class. This class provides
simple annotations for starting, stopping, and resetting the
profiler in an application. Furthermore, we created several
interfaces for aggregating and exporting the measured perfor-
mance data for post-mortem analysis. This minimal profiling
infrastructure provides developers with a workflow for quickly
identifying bottlenecks within the Hatchet APIs.

B. HPCToolkit Reader

Of the many different profiler tools supported by Hatchet,
HPCToolkit is more fine-grained in its metric collection when
compared to other tools, resulting in larger and more complex
datasets. As an example, an HPCToolkit profile of Lammps
collected on 512 nodes produces a calling context tree (CCT)
of over 34,000 call sites and approximately 50,000,000 perfor-
mance data records. The large size of HPCToolkit’s profiles
made Hatchet’s HPCToolkit reader an obvious first step to-
wards extending Hatchet’s support for big data. The following
subsection discusses the primary bottleneck identified in the
HPCToolkit reader and explains the optimization methodology.

1) Bottlenecks and Optimization: After initial analysis, we
pinpoint the critical bottleneck inside of a recursive, tree-
traversing function call that constructs Hatchet’s graph nodes
from HPCToolkit’s XML representation of call sites in a
profile. In addition to constructing nodes for the Hatchet
graph, this function also derives exclusive timing metrics from
inclusive metrics collected natively by HPCToolkit. Hatchet
calculates the exclusive metrics for a node by subtracting the
current node’s inclusive metrics from its parent’s. The few
lines of Python code dedicated to this procedure dominates
the bottleneck found in this function.

The procedure itself uses pandas’ conditional indexing
functionality to find all rows containing the current node’s ID
and its parent’s ID. The two resulting lists are then subtracted
as vectors and re-inserted into the Hatchet DataFrame. In
a sequential profile, this would be only two rows in the
DataFrame, accessible directly by the structured index. How-
ever, HPCToolkit metrics are collected per execution thread
for each call site. This means that a given node ID appears
in the DataFrame n times, where n is the total number of



Fig. 8: Log-log plot showing performance before and after op-
timization of the HPCToolkit reader as the size of the Hatchet
DataFrame increases. The optimized HPCToolkit reader scales
significantly better compared to its unoptimized predecessor.

execution threads the profiled application was running on. For
highly parallel programs, this can mean searching for tens of
thousands of rows containing the same parent and child ID.

This significant duplication of rows, with slight variations in
the metric data across threads, causes the Hatchet DataFrame
to explode in size compared to its corresponding CCT. As the
pandas DataFrame is not optimized to handle operations on
very large datasets, operations such as conditional indexing
are the primary bottlenecks in Hatchet. For each statement
node in the HPCToolkit XML data, the conditional indexing
was performed twice – once for the parent and again for the
child to get the two vectors of inclusive metrics – increasing
the time spent in this slow operation.

Fortunately, the structure of this data as well as opportunities
to speedup array-based operations provided by the C/Python
hybrid language, Cython [20], made optimizing the conditional
index operation simple. We first extract the relevant columns
(i.e., inclusive metrics) from the DataFrame, pass them into a
Cython function, and exploit the structure of the data to stride
over millions of rows of data in a few iterations, locating and
updating only those rows of interest.

Hatchet’s DataFrame can be decomposed into t equal sized
sub-frames of length m, where t is the number of execution
threads used to run the application and m is the number of
call sites. Since each sub-frame is sorted by node ID, there
is no need to iterate over the entire DataFrame row-by-row.
Instead, we make t strides of length m over the metric values
and subtract the children metrics from the parents metrics at
each iteration. For the largest dataset tested, this reduces the
number of iterations over our DataFrame (per function call)
from greater than 100,000,000 to a little over 30,000.

2) Results: To examine the impact of our optimizations,
we measured the runtime of Hatchet’s HPCToolkit reader on
a series of profiles which increase in size from 999 call graph

1 gf1 = GraphFrame( ... )
2 gf2 = GraphFrame( ... )
3 gf1.unify(gf2)

Fig. 9: An example of Hatchet’s unify operation. The left
graph and middle graph are unified by traversing both graphs
and adding any nodes that exist in one graph but not the
other. The result is a single unified graph shown on the right.
The DataFrame produced from the unify operation contains a
new _missing_node column identifying which nodes were
exclusive to each graph are shown with an L or R.

nodes and 191,808 rows in our dataframe to 34,855 nodes
and 53,537,280 rows. The scaling run was executed five times
for each read first on the unoptimized code and again on
the optimized code. These scaling profiles came from parallel
runs of AMG2013 [12], Kripke [13], and Lammps [14] used
to create benchmarks for the case study in Section III. The
results of these trials are presented in Fig. 8. In this figure
each datapoint represents the average runtime over five trials
to read in a HPCToolkit profile of a particular size.

After examining this runtime data, we found that our opti-
mizations improve the performance of Hatchet’s HPCToolkit
reader significantly. As can be seen in Fig. 8, the slow-
down of the pre-optimized solution becomes more pronounced
with larger DataFrames, while the optimized code scales
consistently. The divergence demonstrates that the relative
speedup of the optimized HPCToolkit reader will increase as
datasets continue to grow in size. For a DataFrame containing
50,000,000 rows, the HPCToolkit reader went from read times
of six hours and fifteen minutes to two minutes and twenty-
four seconds, a reduction of two orders of magnitude.

C. Unify

The unify operation takes two distinct GraphFrames, unifies
the graphs, and reindexes the DataFrames by the nodes in
the unified graph. The updated GraphFrames contain the



unified graph created from the union of the two graphs (as
shown in Fig. 9) and a reindexed DataFrame containing all
the nodes from both DataFrames. This updated DataFrame
stores metadata about the origin of nodes with a column
_missing_node, which denotes that a particular node ex-
isted only in the original left or right GraphFrame. If a row was
shared by both DataFrames, then this column is left empty.

Although not the major bottleneck operation in Hatchet,
we chose to optimize unify since it is a primary operation in
most of Hatchet’s binary APIs. Specifically, unify underlies all
element-wise arithmetic operations, such as multiply or add.
Section V discusses some of these APIs in more detail. Since
these arithmetic operations are critical to the unique profiling
workflow offered by this library, it is essential that they be
performant.

The initial performance analysis of unify — executed with
the same profiling infrastructure introduced in Section VI-B
— reveals merit in targeting unify as a potential bottleneck.
Unifying a Lammps dataset with 50,000,000 rows and 34,000
nodes with another dataset of roughly equivalent size takes
5,892 seconds or one hour and 38 minutes. Even when
unifying smaller datatsets (100,000 rows and 1,000 nodes in
the CCT), the unify operation is notably slow, consuming 30
seconds.

1) Bottlenecks and Optimizations: Mirroring the narrative
of the HPCToolkit reader, we determine the runtime of uni-
fying GraphFrames is dominated by the time spent updating
the DataFrames. In contrast to HPCToolkit however, slow-
downs are spread out among several pandas library opera-
tions in Hatchet’s internal DataFrame management function,
_insert_missing_rows.

Following a more mechanical approach to optimizing the
pandas library, the initial performance enhancements involved
tweaking existing code to follow pandas conventions. Assign-
ing values in DataFrames in C-like loops are swapped out for
assigning values using Python lists or NumPy arrays that are
then assigned to a pandas DatatFrame column. Both native
Python and NumPy handle single-element array access and
their array/list creation are significantly better than pandas.
This optimization provides some marginal speedup and re-
veals a need to start integrating Cython for more substantial
performance gains.

The next bottleneck in unify exists within this same func-
tion, _insert_missing_rows, where a call is made to
the pandas isin method. This particular method takes an
argument of a list, NumPy array or pandas Series and returns
a boolean mask with a true or false for each element in the
passed array. This mask indicates each element’s presence
in the calling DataFrame. For DataFrames of over 1,000,000
rows — which makes up the vast majority of our test cases
— pandas falls back to NumPy’s isin functionality, which
combines np.unique for sorting and a binary search for
determining membership. This isin operation does not per-
form especially well with lists of complex objects, such as the
nodes used by Hatchet.

After examining the source of slowdown in pandas’ isin,

Fig. 10: Log-log plot showing the pre- and post-optimization
performance of the unify operation as the size of the dataset
increases.

we implemented a more specialized function in Cython.
Hatchet’s specific isin function is directly optimized for
Hatchet’s data and designed to use as few columns as possible.
By using Cython, we reduce overhead introduced by superflu-
ous calls through pandas to NumPy, and into NumPy’s various
libraries. Furthermore, we pre-process our complex array of
“node” objects into a sorted array of integer node IDs. This
fundamental array can be quickly iterated over and with lower
memory overhead. We implement the isin function itself as
a binary search inside of a loop over the searched-for array
of elements. We further speed up this binary search by adding
an early stopping condition: if we have previously visited the
current node ID, then copy the prior results to this one and
forego the search. This optimization ensures that the number
of binary searches performed is bound by the number of nodes
and not the number of rows.

There is very little opportunity for a critical spot optimiza-
tion like Hatchet’s custom isin function. However, remov-
ing multi-indexes resulted in another 25% speedup over the
order-of-magnitude speedup gained from prior optimizations.
Hatchet leverages multi-indexes comprised of nodes, ranks,
and threads to provide a meaningful and unique index for
each row in its DataFrame. Compared to single indexes, multi-
indexes introduce a noticeable overhead to standard pandas
operations like concat or even assignment of a new column.
Although the source of this overhead is not abundantly clear,
the use of multi-indexes apparently introduces a layer of calls
through the ”multi” library in pandas. By removing the multi-
index, we eliminate this layer of calls to “multi” and reduce
the slowdown observed with many pandas methods.

2) Results: To measure the impact of our optimizations to
the unify method, we collected the runtimes produced by
joining two similar GraphFrames constructed from the same
pool of HPCToolkit profiles we used to measure our HPC-
Toolkit reader. The performance results, averaged over five



1 gf1 = GraphFrame.from_hpctoolkit( ... )
2 gf2 = GraphFrame.from_hpctoolkit( ... )
3 gf3 = gf1 - gf2

Fig. 11: Simple workflow using the Hatchet library. Two
similar HPCToolkit datasets are read in to Hatchet, and we
compute the difference in their metrics. With optimizations,
we reduced this workflow from 14 hours to 10 minutes and
30 seconds.

trials per-unify are shown in Fig. 10. Because this experiment
required pairs of datasets per run, there are two fewer data
points in this figure compared to Fig. 8. The two missing
profiles did not have a similar implementation to unify on so
they were omitted from our scaling run.

For smaller datasets, we saw a reduction from 30 seconds
to approximately 1 second. For mid-sized DataFrames con-
taining millions of rows, unify went from minutes down
to tens of seconds. For very large datasets, unify’s perfor-
mance went down from greater than an hour to only a few
minutes. The primary contributor to the order-of-magnitude
speedup between our pre- and post-optimization is Hatchet’s
Cythonized, custom isin function. The similarity in the
trend of our pre- and post-optimization runtime measurements
speaks to the similarity of the underlying functionality which
drives NumPy’s isin method and Hatchet’s. We attribute
the substantial speedup to a reduction in overhead from
Python function calls, memory management, bounds checking,
and reduced space requirements. However, no algorithmic
advantage exists like that produced by our HPCToolkit reader
optimizations.

D. Workflow Improvements

A simple workflow for Hatchet is depicted in Fig. 11. In this
workflow, a user reads in two HPCToolkit profiles, perhaps
collected at two different levels of concurrency or varying
the underlying MPI implementation. A user then uses one
of Hatchet’s arithmetic operators to make a quick comparison
between the two runs, storing the result in a new GraphFrame.
Before optimization, this program would take fourteen hours
to compare two HPCToolkit profiles collected from a large
program run on 512 nodes.

After integrating the optimizations detailed in this section,
the overall runtimes for analyzing large datasets has been
significantly reduced. The runtime for these operations has
been reduced to ten minutes and thirty seconds for the same
large profiles (80X improvement). The optimizations detailed
in this section improved the performance for a key workflow
in Hatchet.

VII. RELATED WORK

There are many profilers available that can collect call
graphs or call paths for post-hoc analysis [2]–[5], [21],
[22]. There are also CCT-specific visualization tools, such
as that provided by TAU, HPCToolkit’s HPCViewer [23],

CallFlow [24], [25], and flame graphs [26]. Currently, the
most scalable tool for visualizing call paths is HPCTrace-
Viewer [27], which shows the calls paths varied across time,
MPI ranks, and threads. There are two limitations with existing
tools. First, they are limited to their own data format, meaning
they cannot import data from other tools. Secondly, they are
limited to their own custom GUI interface for viewing the
call graph, and do not provide flexibility to script analyses
to manipulate the profile data. With Hatchet, we provide a
canonical data format for profile data, so it can read data from
several different profile tools. Additionally, Hatchet provides
operators to automate the performance analysis of structured
data without having to learn a new format or how to interface
with a new GUI.

Within the tools community, there is an effort to leverage
a database for storing data and to provide their own language
for interacting with the data. PerfExplorer [28], for example,
provides its own database, a GUI interface, and a custom data
format known as PerfDMF [29]. Similarly, Open|SpeedShop
uses an SQL database and its own GUI interface. The work
most closely related to Hatchet is differential profiling, which
demonstrated the benefits of computing the difference between
two call trees to pinpoint performance bottlenecks [30], [31].
To expand on this idea and to enable analysis of larger
profiles, Tallent et. al extended HPCToolkit to include derived
metrics [32], [33]. Since Hatchet is built upon the pandas
data analysis library [8], [11], it provides a number of data
manipulation APIs that are performant on large tabular data.

VIII. CONCLUSIONS AND FUTURE WORK

Analyzing performance and pinpointing bottlenecks in the
application are important to guiding application developers in
the optimization workflow. It is a huge challenge to effectively
analyze large codes that may contain several thousands lines
of code and several unique nodes in the call graph or calling
context tree. Many of the current tools are insufficient to
provide programmatic capabilities for reproducible analysis.

In this paper, we provided an overview of four different ef-
forts to extend Hatchet’s profiling capabilities. We introduced
Hatchet’s new syntax query language, so users can specify
expressions for filtering the graph. We also demonstrated
Hatchet’s new interactive visualization capabilities in Jupyter,
enabling users to drag and drop a subtree to filter the graph. As
a result of the drag and drop, the Jupyter integration will show
the query that can be inserted into scripts for future analysis.
We have also increased the flexibility of Hatchet’s terminal
tree output, such as inverting the colormap depending on
which nodes a user wants to draw attention to and annotating
nodes that may only exist in one graph or the other. We
also provided an overview of some new APIs that have been
added to Hatchet’s analysis toolbox. Lastly, we discussed
different optimizations to Hatchet’s existing APIs and showed
significant speedups at large scale.

For future work, we plan to develop Hatchet’s own data
output format, enabling users to save out GraphFrames pe-
riodically throughout the analysis process. For large datasets



that may take a significant amount of time to process, this ca-
pability will significantly improve the analysis workflow with
Hatchet, since analysis can start from an intermediate step. We
are looking into making this output format interoperable with
databases, so Hatchet can store its data in a database in the
future.
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T. Priol, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 97–106.

[32] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M. W. Fagan, and
M. Krentel, “Diagnosing performance bottlenecks in emerging petascale
applications,” Nov. 2011.

[33] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable
identification of load imbalance in parallel executions using call path
profiles,” Nov. 2010.


