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ABSTRACT
We describe an interactive computing environment called JetLag.
JetLag implements the following features of Phylanx project: (1)
Phylanx, a Python-based asynchronous array computing toolkit;
(2) the APEX performance measurement library; (3) a performance
visualization framework called Traveler; (4) the Tapis/Agave Sci-
ence as a Service middleware; and (6) a container infrastructure
that includes Docker-based Jupyter notebook for the client and a
singularity image for the server.

The running system starts with a user performing array com-
putations on their workstation or laptop. If, at some point, the
calculation the user is performing becomes sufficiently intensive or
numerous, it can be packaged and sent to another machine where
it will run (through the batch queue system if there is one), produce
a result, and have that result sent back to the user’s local interface.
Whether the calculation is local or remote, the user will be able to
use APEX and Traveler to diagnose and fix performance related
problems.

The JetLag system is suitable for a variety of array computational
tasks, including machine learning and exploratory data analysis.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; •Human-centered computing→ Interactive systems
and tools.
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1 INTRODUCTION
A trend in modern computing and data analysis is to move away
from huge, statically-compiled codebases and toward dynamic, in-
teractive runtimes based on high-level languages such as Python,
R, or Julia. This trend best supports problems confined to a single
host. When analysis requires more compute, users are left reim-
plementing analytic pipelines using cloud compute environments
emphasizing resiliency through distributed disk storage.

The JetLag environment allows programmers to send Phylanx
functions and arguments to remote hosts. It serializes both the code
and the arguments, sends them to the specified destination, runs the
code, serializes the results and performance data and sends them
back. While the code is running, its status can easily be checked. In
this fashion, a large number of calculations may be launched and
managed simultaneously.

Phylanx provides a framework that can execute arbitrary Python
code using an asynchronous many-task runtime system [12]. Using
decorators, Python functions are transpiled into C++ data struc-
tures that can be analyzed and reconfigured to provide optimal
performance. The Phylanx environment, JetLag, integrates Phylanx
with performance monitoring and analysis tools, and remote exe-
cution and job control capabilities. Phylanx aims to enable the user
to make use of multiple resources, including cloud resources.

Phylanx is based on HPX, an open source C++ library for par-
allelism and concurrency [8]. HPX provides a high performance,
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Number of Threads Walltime(s) Speedup
1 123.97 1
2 69.28 1.78
4 51.30 2.41
8 49.12 2.52
16 61.01 2.03

Table 1: Execution time of the Logistic Regression example
when the number of threads are varied. Speedup in the table
is calculated with respect to the same example running on a
single thread.

cutting edge implementation of the C++ parallel standard. In addi-
tion, it provides extensions to enable computations.

2 THE COMPONENTS OF JETLAG
In this section, we describe the individual components of the JetLag
framework.

2.1 Phylanx and HPX
Phylanx [12] is a framework that allows us to build a C++ data struc-
ture that describes an execution tree from any Python3 function.
Phylanx uses a Python decorator to gain access to the function’s
abstract syntax tree. Using this tree, it generates a representation
of the function in PhySL, a human-readable, intermediate language
used by the Phylanx project to assemble the data structure.

The C++ execution tree is executed in an asynchronous fash-
ion, using HPX [8], a high-performance Asynchronous Many-Task
(AMT) runtime system extending C++ programming language to
expose uniform API for distributed and parallel programming. HPX
has proven itself capable of running on many thousands of cores [9]
in a distributed setting and provides a solid backend for the Phylanx
execution system. HPX also comes with performance measurement
and adaptive optimizations through customizable runtime policies,
which are further extended and maintained through APEX (Sec-
tion 2.2).

Array data structures in Phylanx are implemented using Blaze [7],
a smart expression-template library for C++. In addition to its flexi-
bility and high performance, Blaze can make use of HPX for thread
level parallelism make it an ideal choice for this framework.

Listing 1: Binary Logistic Regression
# Logistic Regression Algorithm

def lra(x, y, alpha , iterations , enable_output ):

weights = np. zeros(np. shape(x)[1])

transx = np. transpose(x)

pred = np. zeros(np. shape(x)[0])

error = np. zeros(np. shape(x)[0])

gradient = np. zeros(np. shape(x)[1])

step = 0

while step < iterations:

if (enable_output ):

print("step:␣", step , ",␣", weights)

pred = 1.0 / (1.0 + np.exp(-np.dot(x, weights )))

error = pred - y

gradient = np.dot(transx , error)

weights = weights - (alpha * gradient)

step += 1

return weights

Number of Threads Walltime(s) Speedup
1 24.96 1
2 17.43 1.43
4 12.52 1.99
8 8.7 2.86
16 8.35 2.98

Table 2: Execution time of the Alternating Least Squares ex-
ample when the number of threads are varied. Speedup in
the table is calculated with respect to the same example run-
ning on a single thread.

Listing 2: Alternating Least Squares
# Alternating Least Square

def ALS(ratings , reg , num_factors , iterations , alpha , X, Y):

num_users = np. shape(ratings )[0]

num_items = np. shape(ratings )[1]

conf = alpha * ratings

conf_u = np. zeros((num_items ,1))

conf_i = np. zeros((num_items ,1))

c_u = np. zeros((num_items , num_items ))

c_i = np. zeros((num_users , num_users ))

p_u = np. zeros((num_items ,1))

p_i = np. zeros((num_users ,1))

I_f = np. identity(num_factors)

I_i = np. identity(num_items)

I_u = np. identity(num_users)

i = 0

u = 0

k = 0

XtX = np. zeros(( num_factors , num_factors ))

YtY = np. zeros(( num_factors , num_factors ))

A = np. zeros([ num_factors , num_factors ])

b = np. zeros([ num_factors ])

while k < iterations:

YtY = np.dot(np. transpose(Y), Y) + reg * I_f

XtX = np.dot(np. transpose(X), X) + reg * I_f

while u < num_users:

conf_u = conf[u, :]

c_u = np. diag(conf_u)

p_u = conf_u != 0

A = YtY + np.dot(np.dot(np. transpose(Y), c_u), Y)

b = np.dot(np.dot(

np. transpose(Y), c_u + I_i), np. transpose(p_u))

X[u, :] = np.dot(inverse(A), b)

u = u + 1

while i < num_items:

conf_i = conf[:, i]

c_i = np. diag(conf_i)

p_i = conf_i != 0

A = XtX + np.dot(np.dot(np. transpose(X), c_i), X)

b = np.dot(np.dot(

np. transpose(X), c_i + I_u), np. transpose(p_i))

Y[i, :] = np.dot(inverse(A), b)

i = i + 1

u = 0

i = 0

k = k + 1

result = np. vstack ((X, Y))

return result

Binary Logistic Regression [1] Algorithm (LRA), implemented
in Python, a snippet of which is shown in Listing 1 was used for ex-
perimental purpose. We used a custom dataset consisting of 10000
features and 10000 observations. Table 1 shows the speedup of the
Logistic Regression example with respect to single threaded execu-
tion. Execution time reported is for 1000 iterations. Furthermore,
we also implemented Alternating Least Squares [5] (ALS) algorithm
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in Python as shown in Listing 2. The speedup of the Phylanx ex-
ecution of the Alternating Least Squares example with respect to
single threaded execution is shown in Table 2. The execution time
reported corresponds to the Alternating Least Squares example run-
ning with the MovieLens Dataset [4] for one iteration. The number
of movies was set at 1000 and the factor was set at 40.

2.2 APEX and Performance Measurement
APEX [6] (Autonomic Performance Environment for Exascale) is a
performance measurement library for distributed, asynchronous
multitasking runtime systems such as HPX, the runtime uponwhich
Phylanx is built. It provides lightweight measurement (capable of
supporting tasks of duration less than 1ms) and high concurrency.
To support performance measurement in systems that employ user
level threading, APEX uses a dependency chain rather than the call
stack to produce traces. APEX supports both synchronous and asyn-
chronous introspection. The synchronous module of APEX uses an
event API and event listeners. Whenever an event occurs, APEX,
using this aforementioned API, makes a decision to start, stop, yield
or resume timers for correct measurements. The asynchronous
module, however, does not rely on events, rather it executes desired
functionality periodically.

The policy engine of APEX provides a lightweight API to engi-
neer policies that can improve the performance of the application,
execute a desired functionality on the runtime or select important
runtime and application parameters. There are two ways to regis-
ter a policy: either explicitly triggered or asynchronously periodic.
A triggered policy can be initiated by a specific event within the
HPX runtime. There is a set of generic events provided by APEX,
such as initialization/finalization, creation of a new thread, timer
start/stop events, or message send/receive events. Additionally, it
is also possible to provide a user defined event, also known as a
custom trigger. The second class of policies, the periodic policy,
operates without any event. Instead, this policy uses a defined timer
which is specified during the policy’s registration. All policies are
stored in a policy queue and executed as instructed. The policy
engine is integrated with Active Harmony [10], an online tuning
library. Defined policies can use this library to search for a set of
optimum parameters by minimizing a measurement value from
APEX, such as wall time of a measured region/task or by looking
at any other introspection data gathered by APEX.

APEX has native support for performance profiling, in which all
tasks scheduled by the runtime are measured. At any point during
the execution, the profile contains the number of times each task
was executed and the total time spent executing that type of task.
In order to perform detailed performance analysis involving task
dependency analysis, full event traces including event identifica-
tion and start/stop times have to be captured. To that end, APEX
is integrated with the Open Trace Format 2 [3] (OTF2) library—an
open, robust format for large scale parallel application event trace
data. OTF2 is a robust reader/writer library and binary format spec-
ification that is typically used for high-performance computing
(HPC) trace data. In order to capture full task dependency chains in
HPX applications, all tasks are uniquely identified by their GUID
(globally unique identifier) and the GUID of their parent task. These

GUIDs are captured as part of the OTF2 trace output. Figure 3 de-
picts an execution where OTF2 data is used to bring back PAPI [11]
performance counter data.

Furthermore, it should be noted, that APEX has introduced min-
imal overhead. In our LRA experiments, for example, it increased
execution time by approximately 1%.

2.3 Traveler and Performance Visualization
Traveler, shown in Figures 1 and 3, is a web-based performance
visualization framework designed with asynchronous many-task
runtimes (AMTs) in mind. It supports charts commonly used to vi-
sualize performance in HPC, such as time series, histograms, source
code, and Gantt charts but also aggregated execution graphs [14]
as more commonly analyzed to understand AMT execution.

These visualizations can be used to quickly verify expected be-
havior of the system or to locate anomalies or unexpected pat-
terns leading to poor performance. We’ve previously consulted
the execution graph visualizations in the tuning of performance
parameters [13].

In support of Phylanx and Jetlag performance analysis, Traveler
manages dynamic linking between charts—clicking on a Phylanx
primitive (a building block of the Phylanx execution tree, basically
a single function) will highlight instances of that primitive in all
charts and time axes have linked panning and zooming. Figure 1
shows an example. Design and implementation to support further
charts, create default configurations, and optimize responsiveness
for larger datasets is ongoing.

Traveler can read three types of data output by JetLag: (1) OTF2
data, which includes task traces and can optionally be annotated
with PAPI counters (as in Figure 3) as well as both sampled OS
information and extra dependency information through APEX (as
in Figure 1), (2) execution graph data generated directly by Phylanx,
and (3) raw source code. A Jetlag run may send to Traveler any
subset of this data.

While Traveler can be run independently, loading and serving
data files from the command line, it is also designed to integrate
with the JetLagworkflow. JetLag can send the collected performance
data directly to a running Traveler server. The overall workflow is
summarized in Figure 2.

2.4 Agave/Tapis and Job Submission and
Control

The Agave Framework (recently rebranded as Tapis by TACC),
is used to describe and submit jobs to remote resources, moni-
tor progress, transfer files, and share data [2]. Additionally, the
Agave/Tapis platform provides us with detailed provenance data.
In combination with the Singularity image we create to run the
Phylanx jobs, we are able to make any remote system look the same
to the user and simplify their access to jobs.

For each remote system accessible to a user of JetLag, there must
be an administrator who sets up and configures the machine for
Agave/Tapis, providing information about the queuing system, the
file system, ensuring the Singularity image is installed, and so forth.
The administrator can then grant access to each user that wishes to
use the Phylanx application. Users only need to know a jetlag_id
for the machine in order to submit jobs there.
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Figure 1: Traveler web interface: The black bar on the left shows available datasets and the interface for adding andmodifying
charts. These can be automatically populated through Jetlag. On the right, three charts are shown for the LRA dataset: a Gantt
chart of executing tasks, a Utilization chart, and a node-link diagram of the execution tree. A single primitive is selected in
the execution tree (yellow outline) and all matching tasks in the Gantt chart and associated utilization in the Utilization chart
are also highlighted in yellow. The black lines across locations in the Gantt chart are calculated from the GUIDs reported by
APEX.

Traveler visualization

Client machine, container
Cluster

Agave / Tapis
OAuth Provider

JetLag

Phylanx execution

or Jupyter notebook

credentials
source code
input data

output data
APEX performance data

Figure 2: A diagram of the JetLag workflow. JetLag sends
credentials, source code, and input data to a cluster, using
Agave / Tapis for authentication. The results of executing
the source code on the cluster with Phylanx are returned to
JetLag on the client’s machine, container, or Jupyter note-
book, and as any collected APEX performance data is also
returned for visualization with Traveler.

Users can also provide a callback URL to be invoked when the
job completes. This URL can contain parameters such as JOB_ID for
crafting a custom message. This URL can trigger anything from a
cell phone notification through a service like Pushbullet, or the next
step in a workflow. Alternatively, an email address can be given as
the URL, in which case a message will be sent to that email address.

3 FUTUREWORK
As Phylanx and the tools around it continue to mature, we have
a number of different directions we wish to take this research en-
vironment. First and foremost is to a distributed setting. We are

actively working on various primitives for distributed computa-
tion, including multi-dimensional distributed arrays. Our work in
creating a Singularity image with the complete Phylanx instal-
lation and integrating it with Agave/Tapis was preparatory for
that step.

To date, much of our performance gathering experiments have
been relatively small scale, and of necessity have only run on a
single node. We anticipate the need to refine and optimize the data
collection process as we scale to larger applications.

4 CONCLUSION
We have described an advanced research computing environment,
an interactive, Python-based asynchronous array analysis tool. It
uses Phylanx and HPX to achieve high concurrency, APEX for
performance monitoring, and Traveler to visualize performance
data. It is capable of managing runs and sharing data through the
underlying Agave/Tapis Science as a Service middleware.
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Figure 3: Traveler charts from an an LRA run, showing a Gantt chart, Utilization chart, and time series of PAPI counters
collected across all locations (bottom chart). Sampled /proc/meminfo and related data can also be charted.
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