
Human-in-the-loop Extraction of Interpretable Concepts
in Deep Learning Models

Zhenge Zhao, Panpan Xu, Carlos Scheidegger, Liu Ren

Fig. 1. ConceptExtract supports human-in-the-loop visual concept learning and uses the extracted visual concepts for fine-grained
model interpretation, diagnostics and comparison. (A) an image patch view displays small patches or super-pixels (Fig. 4) segmented
from the original images with informative overlays to facilitate interactive visual concept extraction. It displays visually similar patches in
close proximity without overlap. Here, the overlay shows pixel-wise prediction accuracy for an image segmentation model for road scene
understanding, and the border color of each image patch encodes a concept confidence score; (B) a cross-filter panel enable filtering
patches based on the concept confidence scores and other statistics; (C) an active learning labeler panel allows easy specification of
positive and negative samples for training models; (D) a model analysis panel using the learned visual concepts (shadow, cloud) for
fine-grained model interpretation, diagnostics and comparison. (E) a model summary panel showing a summary of the target model
performance. This figure shows ConceptExtract being used to analyze an image segmentation model for road scene understanding in
autonomous driving scenarios. Please refer to Section 7.2 for more detail.

Abstract—The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve
various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc
interpretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task
that is not easily addressed with automatic approaches. We present a novel human-in-the-loop approach to generate user-defined
concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge
and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an
interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract
human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions,
compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning
approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect
model performance, we develop the corresponding data augmentation strategy that consistently improves model performance.

Index Terms—Visual Data Exploration, Deep Neural Network, Model Interpretation, Explainable AI

• Zhenge Zhao is with the University of Arizona. E-mail:

zhengezhao@email.arizona.edu.
• Panpan Xu is with Amazon AWS AI. Email: xupanpan@amazon.com.
• Carlos Scheidegger is with the University of Arizona. E-mail:

cscheid@cs.arizona.edu.
• Ren Liu is with Bosch Research North America. E-mail:

Liu.Ren@us.bosch.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art performance in
many challenging computer vision tasks and are being widely adopted
in many real-world application scenarios such as autonomous driving.
As a result, recent emphasis on deep learning models has moved from
model accuracy alone towards issues such as model interpretability.
The machine learning community has realized the necessity of making
the models more understandable, especially since these models can
easily have hundreds of millions of parameters with highly non-linear
transformations. First of all, the model/application developers might
want to scrutinize the decisions made by machine learning models
and use them more responsibly [21]. If the model developers can
understand the weaknesses of their AI models, they could minimize
the potential errors or biases of training data in real-world applications.

This is orthogonal to model accuracy: a recent study by Bansal et
al. [4] shows that increasing AI accuracy may not bring the same
improvements for performance if the human cannot develop insights
into the AI system. Secondly, improving model interpretability can
facilitate model refinement.

For instance, when designing AIs for autonomous driving, the de-
tection of unexpected road hazards such as lost cargo [33] is a typical
image segmentation task in computer vision. When model developers
train a neural network like Fully Convolutional Network (FCN) [27] or
DeepLabV3 [9] for lost-cargo detection, the accuracy is relatively low
and the developers have difficulties in finding potential root causes [25],
which could be the lighting conditions on the road, the visual features
of the lost-cargo objects themselves or others. Identifying such poten-
tial root causes can help develop mitigation strategies (e.g. applying
appropriate data augmentations) to further improve the model, and
model interpretation is the key to discover such root causes.

To tackle the issue of interpretability in neural networks, many
techniques [1, 35] have been proposed to help people understand model
predictions. TCAV (Testing with Concept Activation Vectors) and the
follow-up work ACE aim to understand what signals the model uses for
predicting different image labels [13, 23]. They generate a measure of
importance of a visual concept (e.g. wheel, glass) for a prediction (e.g.
predicted as a car) in a trained model. However, the concepts generated
by automatic clustering methods may not match human concepts.

In other words, such methods cannot guarantee that image
patches which are relatively close and gathered in a latent space
are semantically meaningful to humans as a concept. This mis-
match provides the inspiration for our work. We propose a visual
analytics framework to integrate human knowledge in the visual con-
cept extraction process and use the identified concepts to analyze poten-
tial causes of model errors and develop mitigation strategies. Specifi-
cally, we propose a novel combination of an active learning process
with a user interface expressly designed for fast labeling of images
to train a concept extractor network that identifies patches contain-
ing a common concept. Our system ConceptExtract enables users to
explore image patches, control the active learning process and use the
resulting concepts for model comparison and diagnosis. We present
example usage scenarios for different datasets and machine learning
tasks, including image classification for ImageNet [11] and image
segmentation for the lost cargo challenge [33]. We analyze a variety
of neural network architectures, including ResNet [15], VGG [40],
FCN [27] and DeepLabV3 [9], demonstrating the generality of our
proposed approach. Using ConceptExtract, users can extract seman-
tically meaningful concepts, provide concept-based explanations for
different machine learning models and compare them. Our quantitative
evaluation (presented in Section 8) shows this approach produces con-
cept extractors accurately and more efficiently than random labeling or
traditional active learning approaches. Furthermore, we show the valid-
ity of the concepts we extract by following up the concept extraction
procedure with an associated data augmentation strategy that improves
the performance of model under analysis.

In summary, we contribute:

• A novel visual analytics framework supporting a human-in-the-
loop, active learning based approach to extract visual concepts
for model interpretation, as well as identifying visual concepts
that negatively affect model performance (Section 4);

• A prototype system implementing our proposed human-in-the-
loop workflow, featuring scalable image patch exploration, visual
cues and interactive filters for active learning and a rich set of
model diagnostics and comparative analysis visualizations (Sec-
tion 5);

• Two case studies and quantitative experiments demonstrating the
value of using ConceptExtract for diverse machine learning tasks
and datasets (Section 7).

cepts can help develop data augmentation strategies for model
performance improvement (Section 8).

2 BACKGROUND

2.1 Deep Neural Networks
In this paper, we use neural networks whose first layer has as many
units as there are pixels in the input image. To exploit spatial locality,
current deep neural networks (DNNs) use convolutional layers, typi-
cally followed by nonlinear activation functions. After a sequence of
such layers, a fully-connected layer is usually present before the model
output. This basic setup can be used in various tasks by assembling
different layers; each potential configuration is called an architecture.

2.2 Deep Embeddings
To obtain image patches that potentially contain the same concept, we
need some approach to measure image similarity. However, direct
pixel difference measurements fail to take into account misalignment,
distortions, lighting changes, and so on. To solve this problem, we
use deep embeddings as a representation of the image patches. As an
image is passed as an input through a DNN model, the output after
each hidden layer is an embedding in that latent space. These deep
embeddings provide hints for the model to distinguish different images.
Previous work shows that euclidean distance1 in the latent space is
an effective perceptual similarity metric [54]. In this paper, we resize
inputs to match the architecture’s first layer and choose the embeddings
from a low-dimensional layer as the latent representation. (In this paper,
we use deep embedding interchangeably with latent representation.)

2.3 Active Learning
Active learning is a semi-supervised machine learning method where
the learning algorithm can interactively query a user for labeling in-
stances. Instead of manually labeling all the unlabeled instances, active
learning makes a priority to label the data that have the highest impact
on training the model. This method is widely used in training neural net-
works [36, 48, 50]. Commonly used prioritizing methods include model
confidence, margin sampling, and entropy [38]. Once an approach has
been chosen to prioritize the labeling, this process can be iteratively
repeated: a small subset of data with the highest prioritization scores
will be presented to the user to assign labels. After that, the DNN can be
trained on the manually labeled data. Once the model has been trained,
the unlabeled data points can be run through the model to update their
prioritization scores, which significantly reduces the overall labeling
burden. In this paper, we show that allowing a user to pick from a set of
carefully laid-out images produces a more efficient sequence of training
models than is possible with pure sequential active learning.

2.4 Concept Annotations
In image classification, all possible categories are assumed to be known
to the model, and images are typically assumed to belong to a single
class. However, an image may be complex (for example, it can contain
various objects and visual patterns). We refer to these “potential”
labels of these objects as Concept Annotations. They are different from
the classification labels, and an image may admit multiple concept
annotations. Concept annotations are not used in training the network
for the task, but they can provide the grounding necessary for model
explanations.

3 RELATED WORK

The goal of providing a human level of understanding of a deep
learning model now drives an entire subfield of machine learning
research. While some work focuses on building inherently explainable
models [2, 8, 10, 17, 29, 52, 53] to achieve interpretability, we in this
project focus on post-hoc explanations, interpreting models that were
trained without any consideration to interpretability.

• Quantitative experiments that show ConceptExtract produces con-
cepts faster than traditional active learning, and that these con- 1The other common metric option could be cosine similarity.

Post-hoc Explanations Saliency methods form a popular class
of tools that provide localized explanations for each data sample by
calculating the importance of each input feature (typically pixels). Back-
propagation methods like Gradients [39], DeconvNets [51] and Guided
Backpropagation [43] compute the gradient of the network’s prediction
with respect to the input. LRP [3] redistributes the relevance of each
neuron through additive functions that conserve a measure of total im-
portance from layer to layer. VisualBackProp [5] uses deconvolutions to
arrive at a pixel-based importance metric. While saliency methods can
illustrate the attention of deep learning models, the resulting heatmap it-
self can be hard to interpret and assess. The study by Adebayo et al. [1]
shows that some of these popular methods fail the sanity check. Data
perturbation methods [12, 32, 51] use small prediction changes to gener-
ate interpretations. In particular, LIME [34] and SHAP [28] change the
input in a controlled fashion and observe the effect on the output. Slack
et al. demonstrate that LIME and SHAP can be easily fooled by crafting
adversarial classifiers, showing a potential general weakness of pertur-
bation methods [41]. While most saliency methods focus on a single
data sample, our system adopted concept-based explanations to provide
a higher level interpretation that aligns better with human knowledge.

Inherently interpretable models One way to achieve inter-
pretability is by building models which are inherently explainable.
Mimic learning [2] replaces the deep neural networks with models that
are easier to explain. Choi et al. [10] propose RETAIN, a sequence
model with an attention mechanism for highlighting the most meaning-
ful visits of the patients for their diagnosis results. Zhang et al. [52, 53]
propose methods that enforce the interpretability of high-level image
filters through disentangled representations. ProtoPNet [8] is a deep
network architecture that picks out essential patterns in the image and
generates a prediction by comparing those patterns to typical classes
it has seen before. Ming et al. [29] combines prototype learning with
deep sequence models to achieve interpretability. TED [17] suggests
that while training a model, the objectives should combine both the
explanations and the labels. However, currently how to combine them
with popular architectures remains unsolved, and training such models
are often time-consuming. Our approach focuses on diagnosing trained
model and doesn’t need to retrain the original model during the analysis.

Visualizing latent spaces A latent space in deep learning is a
reduced-dimensionality vector space of a hidden layer. The neural
network compresses the input and forms a new low-dimensional repre-
sentation with interesting properties [45, 49]. Here, we employ latent
space techniques to build concept extraction models and provide a good
spatial arrangement for users to select images to label. Recently, some
interactive visual systems have emerged to facilitate the exploration of
the latent space. Spinner et al. [42] propose an interactive visualization
for comparing two different models by exploring their latent spaces. Liu
et al. [26] propose LSC (Latent Space Cartography), a comprehensive
system for mapping and comparing meaningful semantic dimensions
within latent space. SMILY [7] is an interactive system to help patholo-
gists search for similar medical images of patients based on the users’
preferences. We use latent spaces indirectly as the input for our concept
extraction networks and use latent spaces to drive the layout of the
image patch view. More than that, by utilizing different visualization
techniques, ConceptExtract can help the users easily explore the dataset
and summarize their findings.

4 TASKS AND WORKFLOW

4.1 Task Analysis
Model developers encounter different problems while diagnosing
their model to make improvements. Developers want to understand
predictions and find the leading causes of a specific result. For example,
if a classification model predicts an image as a “fish”, is it because
it recognizes the fish body, or is it using contextual cues in the image
such as a human holding it or a container carrying the fish? This
same question has been studied in Summit [20] as well. Another main
concern is the identification of systematic causes of misclassification.
When developing a semantic segmentation model for analyzing road
scenes in an autonomous driving application, developers find that a dog

is incorrectly detected under a tree shadow. Is this just a coincidence or
a common phenomenon happening across the entire dataset? Answer-
ing these questions not only help the developers better understand and
anticipate the model behavior, but also helps them develop effective
strategies to refine the model and improve its performance.

With ConceptExtract, we seek to give model developers a visual ana-
lytic system so they can interpret, diagnose and compare deep learning
models with human-friendly, concept-based explanations. Concretely,
based on previous discussions in visual analytics for deep learning [19]
and the requisite expertise of the co-authors from past experience, we
start by identifying a set of analytic tasks to be supported in the system.

T1: Summarize model behavior. The system should provide a
summary of the model to the developers to start with. Deep learning
models can have different performance metrics depending on the task,
e.g. precision in image classification model and IoU (Intersection over
Union) accuracy in semantic segmentation models; prompt access to
these measures is a requirement.

T2: Browse and explore image patches/super-pixels. It is
challenging for users even to know what visual concepts exist in the
data. Since each dataset potentially contains many concepts, it is
important for the user to be able to extract visual concepts that highly
influence model decision. The system, therefore, needs to provide an
overview of the image patches with a good layout strategy, as well as
also provide a set of filters to help users quickly identify interesting
data samples and decide which image patches to study first.

T3: Train and evaluate concept extraction models. Since no
ground truth labels exist for visual concepts, and it is infeasible for users
to manually label a large number of images, we propose using a separate
concept extraction active learning loop to efficiently derive a set of
image patches containing a visual concept. The system should involve
users’ human knowledge and give them the flexibility to choose and
customize any potential concept they recognize in the image patches. It
should also provide methods for the user to evaluate whether the model
has sufficiently learnt the visual concept.

T4: Analyze how visual concepts affect model decisions. Af-
ter extracting human-friendly visual concepts, the system should sup-
port using them to understand model behavior. The system should help
users systematically analyze how important the visual concepts are for
predicting different classes and analyze how the presence of different
visual concepts in images affects model performance (e.g. shadow
prevents detection of objects on the road).

T5: Compare different models. In addition to investigating
the target model, the system should further support using the visual
concepts extracted for fine-grained model comparison, esp. how the
performance of the models differ on images containing different visual
concepts. This helps reveal the strength and weaknesses of different
models.

4.2 Workflow
To integrate the tasks described above, we present a workflow to help
guide the user through the analysis steps in ConceptExtract. We will
refer to Fig. 2 throughout the section. For the specific settings of the
workflow in real-world applications, please refer to Section 7.1 and
Section 7.2 for more details.

The workflow starts with a preprocessing stage (left portion) with
the available image data and the target model. In the preprocessing
stage, the original images are segmented into patches using fixed
window sizes or super-pixel segmentation algorithms [47]. The
image patches/super-pixels are then resized to the input scale and
fed to the target model. Their latent representations are extracted
at a selected layer in the target model for visual concept learning.
The visual concept learning stage (center portion) uses concept
extractor networks on top of the latent representations to learn
human-understandable concepts and retrieve image patches containing
those concepts for model analysis (T3). Individual networks with
the same architecture but different weights are trained to recognize
different visual concepts through an active learning process.

Fig. 2. The workflow of ConceptExtract. In the preprocessing stage, the images are segmented into image patches or super-pixels. The latent
representations of these image patches/super-pixels are extracted from a selected layer in the target model. The visualization interface layout the
image patches such that similar patches are spatially close. Users can easily identify and create new visual concepts and overlay data such as target
model misclassifications to focus on problematic cases. In the visual concept learning stage, we utilize concept extractor networks to retrieve image
patches containing the same concept (sky and shadow in the figure). The concept extractor networks take the latent presentations of the image
patches as inputs and output concept confidence scores in [0, 1]. We employ a visualization assisted active learning process to train the concept
extractor networks. The learned visual concepts are used in the model analysis stage for model interpretation and comparison with visualizations
such as TCAV scores charts and confusion matrices.

To help users create meaningful novel visual concepts, the system
provides an overview of the image patches and projects them in a way
such that visually similar image patches are close to each other. The
user can also interactively overlay a variety of information on top of the
image patches such as accuracy, ground-truth and predicted labels to pri-
oritize looking for visual concepts that affect model performance (T2).

To support effective novel visual concept learning and reduce user
labeling effort in the active learning process, we propose a hybrid ap-
proach that tightly couples visualization and computational techniques
(T3). For each image patch, the concept extractor network produces a
concept confidence score. The concept confidence score ranges from 0
to 1, where 0 is for confidently negative (the image patch does not con-
tain the visual concept), 1 is for confidently positive (the image patch
must contain the visual concept), and 0.5 is for not sure. The system
visualizes the concept confidence score and supports interactive data fil-
tering based on it to help the users prioritize labeling more informative
examples for model training. In particular, we found that labeling
hard negative samples [37], which are image patches confidently
but wrongly classified, can greatly facilitate the training process.
The user can also filter the image patches with the most confident pre-
dictions to verify if the concept extractor has been sufficiently trained to
recognize visual concepts that align with human-knowledge. To further
reduce user effort and recognize novel visual concepts with very few
labeled examples provided by the user, we also use a data augmentation
strategy [18] which has been proven to be effective in similar scenarios
such as few-shot learning or zero-shot learning [24]. The data augmen-
tation method selects each labeled image patch, randomly applies two
categories of augmentation policies: (1) shape policies like shearing,
flipping, rotating, and (2) color policies like gray-scaling and blurring.

After obtaining a set of visual concepts and the corresponding image
patches, the user can move to the model analysis stage (right portion)
and perform model interpretation, diagnostics and comparison (T4
and T5) using TCAV scores and confusion matrices. The visualization
shows fine-grained analysis, including how each visual concept
affects the model’s and how the model performances differ on images
containing different visual concepts.

5 SYSTEM DESCRIPTION

As shown in Fig. 1, the visual interface consists of a set of visualization
modules to display information like model summary (T1), visual con-
cept images, and a series of interactions to support image patch explo-
rations and the active learning process for training the concept extractor
network. We will discuss the main components in ConceptExtract and
how the these components together support the workflow (Fig. 2).

5.1 The Image Patch View

The image patch view (Fig. 1 (A)) provides an overview of the image
patches to help the user quickly explore the data collections and
identify interesting visual concepts (T2). We apply t-SNE [46] to the
image patches’ latent representations to get a 2D layout. Since directly
plotting the image patches according to the projected coordinates
will result in severe visual clutter, we use a de-cluttering algorithm
to layout the image patches in non-overlapping grids while still keep
visually similar image patches close to each other. Specifically, we
partition the canvas area into grids with identical size rectangles. Then
we randomize the image patch sequence. For each image patch, we
find the grid cell containing the 2D coordinates. If the grid is empty,
we plot the image patch on the grid. If the grid is already occupied, the
layout algorithm will search for the nearest neighbor grids to fill. When
no empty grid is available on the screen, the image patch will be hidden
temporarily. Navigation operations like zooming in will increase the
number of grid cells available. When a different scale is reached, we re-
plot the image patch view to allow more image patches to be displayed
on the screen. We bring similar image patches as close as possible
through this layout while reducing visual clutter due to overdraw.

A control panel on top of the image patch view allows users to
overlay additional information on the image patches as well as filter
the data. When the users first explore the data, it is challenging for
them even to know where to start their study. The “cluster” filter
(Fig. 1 (b)) gives the user the option to plot only image patches in
the selected clusters precomputed using algorithms such as k-means.
Users can also choose color overlays or border highlights on the image
patches to show information such as ground-truth, model predictions
and model accuracy (Fig. 1 (a)). For example in Fig. 1(A), for an
image segmentation model, the visualization displays pixel-wise
image segmentation accuracy where red indicates the wrong prediction
and blue indicates the right prediction. In another example shown
in Fig. 4(a), the visualization uses border color to indicate whether
the source image of a super-pixel is correctly classified in an image
classification model. With different overlays, users can focus on
particular image patches to extract the relevant visual concept. For
example, the user is usually interested in image patches related to
wrong predictions (Fig. 1 (d)) and extracting visual concepts from
those image patches could better benefit model diagnostics.

As a crucial component in the active learning process, the control
panel also has a range slider (Fig. 1 (c)) to help users efficiently filter
the data based on the concept confidence score of each image patch for
the concept currently being trained. The user can also draw the concept
confidence score as the border color of the image patches in a diverging
color scheme, as shown in Fig. 1.

Fig. 3. We apply ConceptExtract to analyze image classification and segmentation DNNs: (A) ResNet-101 [15] trained on ImageNet (B) a Fully
Convolutional Network (FCN) [27] with a DenseNet encoder [22] and a Pyramid Scene Parsing (PSP) [55] structure trained for road image
segmentation. We extract deep embeddings from the smallest hidden layers available. The chosen layers are highlighted in the architecture diagrams.
The concept extractor network used for each architecture is shown on the right.

5.2 The Training View
The training view (Fig. 1 (C)) provides a frontend to control the
active learning process (T3). It contains two parts: a patch details &
interaction area ((Fig. 1 (e)) for the user to assign concept labels and a
training samples list (Fig. 1 (f)) for showing selected images and their
training status. The selected image patch from the image patch view
will be magnified, and the related information will be presented such as
the source of the image patch. The user can directly add any patch that
doesn’t contain the concept into the negative training set by selecting
on the context menu. To add positive samples, the user either crops a
rectangle on the image that contains the concept and discards the rest
of the pixels, or directly selects the whole image patch/super-pixel as
a positive sample. All the selected positive and negative samples will
be displayed in the training samples list (Fig. 1 (f)). Concepts can be
named and saved for use in future sessions. While the active learning
network is trained, the user can continue adding different image patches
into the training set, or end that training stage, save the concept extractor
network and the retrieved images containing the concept.

5.3 The Model Analysis View Using Visual Concepts
The Model Analysis View uses the learned visual concepts to sup-
port fine-grained model interpretation, diagnostics and comparison
(Fig. 1(D)). After a user completes a new concept extractor’s training
process, ConceptExtract shows the record of this concept in this area,
including the concept name and the image patches with the highest
confidence scores. A barchart shows TCAV scores for each visual con-
cept, and the length of each bar indicates the importance of this concept
for predicting a specific class (T4). To gauge a potential weakness of
the model being analyzed with respect to the concepts, we choose for
each concept the top 50 image patches based on the concept confidence
score, find the original images of these image patches and compare
predictions of our target model with the ground-truth using a confusion
matrix (T4). Each row in the confusion matrix represents the ground
truth class, and each column represents the predicted class. The values
on the matrix diagonal show the proportion of the data samples cor-
rectly classified in each class. We use a sequential colormap to encode
the proportion ranging from 0 to 1. With the confusion matrices, the
user can analyze whether the presence of a certain visual concept in the
image leads to more model errors. An example is shown in Fig. 1(g),
where the model being analyzed has worse performance on images
containing the shadow concept.

We can also use the learned visual concepts to to compare different
models visually. For the two selected models from a list, we compute
their confusion matrices for each of the visual concepts and then directly
calculate the difference between them. The differences are displayed
using a diverging colormap, where red indicates negative values and
blue indicates positive values in the matrix. If a second model has
better performance than the first one, the diagonal entries should show
more positive values (blues) in the matrix and vice versa. For example,

in Fig. 6(b) we compare DenseNet to ResNet on images containing
the visual concept sky. Since there are more red colored entries on the
diagonal, we can conclude that DenseNet has worse performance on this
set of images. Such comparison reveals the strength and weaknesses of
each model and helps identify opportunities to use model ensembles to
improve prediction accuracy.

5.4 Other Views

The model summary view (Fig. 1 (E)) shows basic information like
the datasets and the model types. We use both bar charts and confusion
matrices to show model performance on different classes (T1). A
cross-filter view (Fig. 1 (B)) shows the distribution of image patches
based on different features, supporting quick retrieval and comparisons
(T4). In this view, each image patch could be treated as a multivariate
data sample, including variables like prediction accuracy and concept
confidence scores for the existing concept extractors. A barchart is
displayed for each of these variables. To help the user quickly identify
an interesting target and generate new facts, the crossfilter view is also
connected with the image patch view. Only the selected image patches
in the crossfilter will be plotted in the image patch view. These concept
filters can help the user quickly identify confident or confused image
patches for different concepts. It is particularly useful when the user
has trained multiple visual concepts and would like to study how the
learned concepts correlate with each other.

6 SYSTEM IMPLEMENTATION

Our system design separates the frontend for data visualization and
the backend for data storage and active learning. For the backend
of the system, we use Pytorch [31] to implement the target machine
learning models including DenseNet-FCN (We use the implementation
in this repository: https://github.com/sagieppel/Fully-convolutional-
neural-network-FCN-for-semantic-segmentation-with-pytorch.) and
ResNet-101 [16], as well as other models for comparison including
DeepLabV3+ [9], DenseNet [22], VGG [40]. We also use Pytorch
to implement and train the concept extractor networks. To extract
visual concepts, all the images are segmented into small image patches
or super-pixels of different sizes. We use scikit-image (https://scikit-
image.org/) for super-pixel extraction. The image patches or super-
pixels are then scaled to the same size as the input of the target model.
By running them through the target model, we extract and save the
latent representation of these image patches (or super-pixels) at the
selected layer. All image patches, along with their latent representations,
ground-truth labels, predicted labels and (per-pixel) accuracy are stored
in the backend system as binary files in the file system. The application
web server is implemented with Flask [14]. For the frontend design,
we mainly rely on two JavaScript libraries, React and D3 [6] and draw
on both SVG and HTML5 Canvas for better performance.

−

−

Fig. 4. (a) The user identifies that many stripe patterns are associated
with erroneous predictions (b) Through active learning the concept ex-
tractor network is able to accurately retrieve large amount of super-pixels
containing the strip patterns. The stripe concept will be used for further
model analysis.

7 EXAMPLE USAGE SCENARIOS

We demonstrate ConceptExtract in example usage scenarios on two
different perception models for image classification and semantic seg-
mentation tasks. By utilizing our system, interesting visual concepts are
revealed in the models and the datasets. We further demonstrate how to
use these concepts to help model interpretation, model comparison, and
developing mitigation strategies for model performance improvement.

7.1 ResNet-101 for Image Classification
In this section, we demonstrate the application of ConceptExtract in
analyzing an image classification model trained on ImageNet data.
We show that the system can help extract semantically meaningful
visual concepts. ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) is a famous competition which has been held annually since
2010. ILSVRC uses a subset of ImageNet [11] with roughly 1.4 million
images belonging to 1000 categories. For simplicity, we choose a subset
of ImageNet with 10 classes which are the 10 worst performing classes
of the model (tench, tabby, tiger cat, tiger, barracouta, balloon, castle,
church, parachute, vault). Also, most of the wrong predictions of
these 10 classes made by the model are among the same 10 classes, for
example, tench is often misclassified as another type of fish, tabby. In
each class, we randomly sampled 200 images for analysis, which we
think can be processed quickly by our system while generating enough
concept patches. We analyze the pre-trained ResNet-101 [16] model
from PyTorch with top-1 error 22.63% and top-5 error 6.44%. To
extract concepts of different resolutions from these classes, we use the
Quickshift algorithm [47] to compute a hierarchical segmentation of the
images on multiple scales. For each image, Quickshift generates about
12 super-pixels. After that, we resize these super-pixels to the original
input size of the model and pad the empty pixels with neutral gray.
We choose the final convolutional layer (Fig. 3(A)) with dimensions
2048 × 7 × 7 to extract the latent representation of each super-pixel.

Concept Extractor Network Setup Our concept extractor net-
work (Fig. 3(A)) contains only two layers on top of the latent rep-
resentation extracted from ResNet-101: one convolutional layer and
one max pooling layer. A sigmoid function is applied after the max
pooling layer to obtain a concept confidence score between 0 and 1 to
predict whether the super-pixel contains the specified visual concept or
not. This simple architecture is accurate enough for identifying concept
images (see Section 8 for details), and training such a network will not
take the user a lot of waiting time. For each stage, the neural net is
trained until the validation loss does not decrease. We observe that in

Fig. 5. (a) TCAV score shows that the human face is surprisingly im-
portant for identifying the class tench, a type of fish. (b) stripes is an
important visual concept for identifying tiger cat and tiger and is also the
main reason that these two classes are often confused with each other.
most cases the training stops at around 10 epochs. Note that only the
weights in the concept extractor network are updated (and not the task
model under analysis). The concept confidence scores are sent to the
frontend after the training is done. They are displayed in the image
patch view and can also be used to filter the image patches to find the
most informative examples to label. To obtain more training data, we
generate 200 images for both positive and negative training sets by
data augmentation. The 200 images are generated by first randomly
sampling from the available training data and then applying the data
augmentation strategy.

Extracting Visual Concepts The system initially displays all the
super-pixels in a compact layout, generated from a t-SNE projection of
the latent representation. The layout places semantically-similar super-
pixels in clusters that can have associated concepts such as grass and
sky. To prioritize finding concepts that affect model performance, the
user can overlay predictive accuracy for each super-pixel. For example,
one can observe a cluster of super-pixels showing orange and black
strip patterns are often misclassified (Fig. 4(a)). The user therefore
starts creating a new visual concept “orange and black stripe” by adding
new labeled examples. After specified 4 to 5 positive and the same
number of negative samples, the user can click on the “Train” button
in the Labeler to start the first training stage for this concept extractor.
The training time depends on the dimension of the latent representation
and the GPU configuration. On a machine with a GTX 1070Ti GPU,
it typically takes about 50 seconds to train one stage. Based on the
returned concept confidence score, the user can use the filter to select
more informative examples to label, esp. hard negative samples which
are confidently but wrongly classified by the concept extractor. After
several iterations, the user finds that almost all the super-pixels filtered
with a range of high concept confidence score (e.g. 0.75 1.0) contains
orange and black stripe patterns (Fig. 4(b)) and all the super-pixels
filtered with low and medium concept confidence scores (e.g. 0.0 0.5)
do not contain the stripe patterns. Therefore the user can consider the
concept extractor network has successfully learned the orange and black
strip concept and use it for model analysis and comparison.

The user can continue exploring the image patch viewer and create
new visual concepts following a similar process. For each new visual
concept, an individual concept extractor network is created and trained.
They all have the same architecture as described in Fig. 3(A). For
example, she can train four separate concept extractor networks to
identify visual concepts, including human face, fish, stripes, and sky.

Model Analysis with TCAV Scores and Confusion Matrix
From the TCAV scores, we can identify that the human face concept is
highly relevant for predicting the class tench (Fig. 5(a)), a type of fish.
This result aligns with the findings in Summit [20], a previous paper
that also analyzes deep neural networks for ImageNet classification.
They also found that predicting the class tench relies heavily on person
related features. Notice that we use ResNet-101, not InceptionV1 [44]
as in Summit. This leads to the hypothesis that the data distribution, in-

× ×

Fig. 6. The confusion matrices show pairwise model comparison, with
fine-grained information about which model performs better on images
containing a given concept. DenseNet performs better than ResNet on
images containing human faces (a) but worse on images containing sky
(b). The two models show complementary strength, suggesting that a
model ensemble averaging their predictions outperforms both (c and d).

stead of the model architecture, is causing the problem. Since the train-
ing data contains a lot of images of person holding tench, both models
automatically make use of such visual concept to perform classification.

Based on the TCAV scores we can also observe that the three fre-
quency confused classes tiger cat, tiger and tabby cat all uses stripes as
a visual concept to perform classification (Fig. 5(b)). The confusion
matrix shows that on images containing stripes, the model often make
mistakes among the three types of feline animals.

Compare Different Models The visual concepts extracted can be
reused to obtain a fine-grained comparison between different models,
which goes beyond simple benchmarks such as overall model accuracy.
In particular, we can analyze which model is better at classifying images
containing a certain concept. In this example, the user loads another
state-of-the-art model DenseNet [22] to compare it with ResNet-101.
Based on the confusion matrix the user observes that while DenseNet
performs better than ResNet-101 on images containing visual concepts
like human-face, it makes more mistakes on images containing the
sky concept (Fig. 6(a)(b)). Based on such observation, the user
hypothesizes that combining DenseNet and ResNet-101 may result
in a stronger model. To verify such a hypothesis, we construct a
simple ensemble model which takes the prediction (in the form of
class probability) from both DenseNet and ResNet-101 and average
the results to obtain the final class prediction. We further compare the
ensemble model with DenseNet and ResNet-101 and observe that it
indeed corrects the miss-classification of both models (Fig. 6(c)(d)).
We further verify the results by comparing the overall accuracy on the
ten classes and found that the ensemble model achieves 81.8% accuracy
that outperforms both DenseNet (80.0%) and ResNet-101 (80.5%).

7.2 FCN and Semantic Segmentation
In this section, we will focus on presenting the insights discovered
by ConceptExtract when analyzing an image semantic segmentation
model for detecting unexpected objects on the road, usually lost cargos.
The model is trained and tested on the public lost cargo dataset [33].
By utilizing our approach, we show that the model designers can obtain
concepts that are both customized and human understandable. They
can further utilize the insights generated from the concept to diagnose
the model and improve model performance.

The lost cargo challenge addresses the problem of detecting un-
expected small obstacles on the road often caused by lost cargo. To
achieve this goal, a Fully Convolutional Network (FCN) [27] with a
DenseNet Encoder [22] and Pyramid Scene Parsing [55] (Fig. 3(B)
) is trained. We denote the model as DenseNet-FCN in our study.

DenseNet-FCN performs semantic image segmentation by predicting a
label for each pixel in the image. In this case, each pixel could belong
to three different classes, including lost-cargo (obstacles), road, and
background. As shown in Fig. 3(B), to extract the latent representations
for concept learning, we chose the layer at the beginning of the decoder
(dimension: 512 32 64) for two reasons: (i) the layer encodes both
local and global information, (ii) the layer has the most compact size,
which will benefit future computation and storage.

For this task, since the model designers want to keep the context of
potential concepts, we use rectangle boxes with three different sizes
to obtain image patches for extracting concepts instead of segmenting
the image into super-pixels. Since there are a large number of image
patches (over 4 million), we sampled a subset of them for analysis.
Furthermore, since the main task is to detect the lost cargo on the road,
we chose all the image patches containing lost cargo (roughly 1000) and
sampled around 1000 image patches containing the other two labels:
road and background. In all, we have 2533 image patches for concept
extraction and visualization.

The lost cargo has two types of pixel annotations: the coarse ones
including lost cargo (obstacle), road, and background; the fine ones for
distinguishing specific lost cargo objects/obstacles in the images like
boxes, balls, and so on. The coarse annotations are used by DenseNet-
FCN for training and prediction. To quantitatively evaluate our concept
extraction model, we use the fine annotations as groundtruth visual
concepts. We pick a concept — dogs and trained the concept classifier
for 4 iterations. Ten positive and ten negative images are selected
for the initial stage, and for each of the rest stages, four positive and
four negative images are added. The results are presented in Fig. 7.
The figure plots the precision of the concept extractor when retrieving
top-k image patches according to the concept confidence score. For
each active learning stage, we can see a significant improvement in the
precision of the predictions after the active learning process, especially
for the top 50 image patches based on the concept score.

As shown in Fig. 1(A), to prioritize the visual concepts that affect
model performance, the user overlays the pixel accuracy of the model
prediction on each image patch. While exploring these image patches,
the user identifies that sometimes the lost cargo cannot be correctly
detected when it is under a tree shadow (Fig. 1(d)). Is this just a
coincidence, or is it happening across the entire dataset? To answer this
question, the user creates the visual concept named “shadow”. She also
starts specifying positive and negative samples for the concept extractor
to learn to retrieve similar image patches also containing shadow. The
training process also utilizes the data augmentation strategy described
in Section 4.2. The data augmentation process generates 200 images
for both positive and negative training sets.

The model analysis result of “shadow” is displayed in Fig. 1(g),
together with some other concepts. From the confusion matrix, the user
can verify that indeed the DenseNet-FCN model performs worse on the
images containing “shadow” images compared to images containing
other concepts such as standard objects. Meanwhile, the TCAV score
indicates that the “shadow” pattern influences the prediction of all three
segmentation labels (in the image segmentation model, we consider
each pixel as an individual data sample to compute the TCAV score
[23]). To validate this hypothesis, we augmented the training set with
artificially-generated shadows (Fig. 8). We randomly draw a boundary
line across the lost cargo’s bounding box. On a random side of the line,
we apply a brightness reduction. To make the shadow more realistic,
we gradually change the darkness around the boundary with Gaussian
blur. As shown in Table 1, the fine-tuned model after augmentation
is more accurate. To further verify this strategy’s scalability, we
also apply the shadow augmentation to another state-of-art model,
DeepLabV3+ [9] and we see an improvement for IoU accuracy as well.

For this particular usage scenario, we interviewed and gathered
feedback from an industrial expert with 15+ years of experience in
computer vision research and has been heavily involved in the devel-
opment of autonomous driving software. We introduced the main idea
of using visual concept learning for model diagnostics and presented a
walk-through of the system through a remote video call. He immedi-
ately identified that the system has great potential for collecting similar

Fig. 7. The precision curves of the “dogs” concept extractor network in
the lost cargo challenge. The fine annotations available in the dataset
are used as the groundtruth. The top k selections are made based on
the concept confidence score. From the initial stage 0 to the final stage
3, we observe a significant improvement in the precision value especially
for the top selections, validating the effectiveness of the active learning
process and the usability of the concept extractor network.

edge cases (like object under shadows) where the model frequently
makes mistakes. The visual concepts collected provide a good way to
cluster the edge cases, reason about them, and develop corresponding
mitigation strategies (such as adding artificial shadow augmentation).

8 EXPERIMENTAL VALIDATION

In an active learning process, the performance of the model varies with
the training strategies. For example, even if two models are identical
in structure, different methods for selecting the labeling candidate can
generate significantly different model states. Another similar option is
how much data should be labeled in each stage of the active learning
process. In order to understand the impact of these variations, we
carried out a series of experiments to evaluate the effectiveness of our
active learning model in identifying these concepts under different
settings. In the experiments, we mainly consider two main factors:
sampling strategy and latent representation. The first one mainly refers
to how we select the samples for the user to label at each stage. We
compared concept extractors trained using different sampling methods
and explained what sampling strategy we choose for ConceptExtract.
For the second one, to investigate the influence of different latent pre-
sentations, besides the current DenseNet-FCN model, we used another
well-trained model—VGG-16 to extract the latent representations of
the same data and trained the active learning models for the same
concepts. We compared the accuracy of these concept extractors and
demonstrated the concepts these extractors generate. Finally, we also
make justifications about other choices in ConceptExtract including
model architecture, cutout methods, and prioritizing methods.

8.1 Concept Quality vs. Sampling Strategy
One of the main features of ConceptExtract is that it can include
human knowledge in the training process of the active learning model.
The users are able to choose which image patches to add to the training
set for each stage. Another feature to involve human knowledge is that
the user can brush on the image patches to mark the pixels containing
the concept of their interest. To study if these two kinds of human
knowledge can actually lead to a better concept extractor, we set
up a baseline model. The baseline model shares the same network

Model road(%) lost cargo(%) others(%)
DenseNet-FCN-B 75.8 50.6 95.4
DenseNet-FCN-SA 83.6 (0.1) 53.1 (0.5) 96.8 (0.0)
DeepLabV3+-B 82.8 57.4 96.8
DeepLabV3+-SA 82.8 (0.5) 58.6 (0.3) 96.8 (0.1)

Table 1. Lost cargo segmentation performance after training on data with
shadow augmentation. *-B are baseline models trained without shadow
augmentation and *-SA are models trained with shadow augmentations.
Numbers in parentheses are standard deviations. The table shows IoU
accuracy for each semantic segmentation class.

Fig. 8. This figure shows sample images from augmenting the training
set with artificially-generated shadows (Section 7.2). The correlation of
the shadow concept with misclassifications of the FCN model led to us
augmenting the training distribution. The fine-tuned FCN model after
augmentation is more accurate, validating the importance of shadow.
Even though the shadow we generated is not realistic, fine-tuning still
provides a substantial performance improvement.

architecture as the active learning model and it is also trained in 4
stages. For each stage, 10,4,4,4 positive and negative images are needed
respectively (For convenience, we use “x-x-x-x” to refer to the number
of samples added to each training stage). All the processes like the data
augmentation and the training epochs are the same except that instead
of using the images chosen and brushed by users, the baseline model
mimics a standard active learning approach where the most confused
images will be labeled and added to the next training stage. To model
a fully-labeled setting, we also create an upper bound model, using all
image patches as training data and training the model in a single stage.

An important choice to have to make during the active learning
process is how many positive and negative samples should be labeled
by the user at each stage. We seek a sampling strategy that makes

the concept extraction network as accurate as possible while not
requiring too many manually labeled samples. We tried a number of
combinations in labeled images from each stage.

In Fig. 9, we demonstrate the precision curves of the concept
extractors for “standard objects” and “bobby cars” under different
sampling methods. The five models are: (i) baseline model, the model
trained without human knowledge; (ii) 2-2-2-2, for each stage, two
positive and negative images are added to the training set; (iii) 6-4-4-4,
for the initialization, six positive and negative images are added; for
the other three stages, four positive and four negative images are
added each time; (iv) 10-4-4-4, which is also the current model used
in ConceptExtract; (v) upper bound model, trained using all the data in
one stage. As shown in the figure, all active learning models perform
better than the baseline model.

This result illustrates that including human knowledge can improve
the quality of the concept extractor. As we increase the number of
training points for each stage, we see obvious precision improvements
for the concept extractors as well. This suggests that we should include
more image patches in the training process, especially for the first stage.
Comparing these two concepts, “standard objects” are relatively easier
to identify; using only about 3% of the data, we obtain a good con-
cept extractor (at 80% accuracy for the top 100 selections). Although
performance is not as good as the upper bound model as we expand
the selections, the concept extractor still has a stable precision value.
On the other hand, “bobby cars” is a more difficult concept to extract.
Even using all the data, the top selection after 50 is lower than 0.5.
Nevertheless, using only 7% of the positive data, we have already ob-
tained a concept extractor approaching near upper bound performance,
especially within the most confident predictions.

8.2 Concept Quality vs. Latent Representation
In Section 8.1, we have seen different degrees of difficulty for training
different concept extractors. We also find that the overall performance
for the concept extractor network of “standard objects” is better than the
one of “bobby cars.” We mainly have two possible hypotheses. One as-
sumption is about the model architecture. Since we are using a shallow
network for short training time, is the active learning model complex
enough to identify different concepts? Another assumption is about

Fig. 9. The precision curves (plotted based on top-k selections based
on the concept confidence score) for two concept extractors: bobby cars
and standard objects under five sampling strategies. “baseline” is the
model trained without human knowledge; “2-2-2-2” means for each stage,
two positive images, and two negative images are added to training set;
similar to “6-4-4-4”; the current model is the one used in the system,
using a 10-4-4-4 sampling strategy; the upper bound model trains all the
data in one stage. The curves show that the quality of the extractors for
different concepts can vary significantly. This is mainly caused by the
latent representations we use, which we discuss in Section 8.2.
the latent representation. Since the extractors are using the deep embed-
dings extracted from the task model as input instead of the image’s pix-
els, will the deep embeddings be capable of capturing these concept fea-
tures in the latent space? To investigate how different deep embeddings
will affect the quality of the extractors, we carried out an experiment,
where we obtained a pre-trained VGG-16 model from Pytorch, sent the
image patches through this model and extracted a new set of deep em-
beddings. After that, we trained the extractors for the same concepts us-
ing these new deep embeddings. Comparing to the image segmentation
model (FCN) we originally used, this VGG-16 model is well-trained
and the performance for the classification task is fairly good.

In Fig. 10, we show results for “standard objects”, “bobby cars”, and
“dogs”, concepts trained with two different deep embeddings. For all
concepts, extractors using embeddings of VGG-16 perform better than
those of FCN. For “bobby cars” and “dogs”, the difference is substantial:
precision values are roughly 0.7 and 0.9 for the top 50 selections,
compared to those using the FCN model, which is about 0.4 and 0.5.

This experiment also verifies that even though the architecture of our
concept extraction network is very simple, it can still extract concepts
from the image patches. It also indicates that we can relate the extrac-
tion network’s inability to extract a concept to the quality of the task
model representations in the latent space. For an image segmentation
model like FCN, since the model is trained on the specific task to dif-
ferentiate lost cargo, road and backgrounds, it is not able to distinguish
different type of cargoes like bobby cars and dogs, or telling humans and
trees from the background very well. In contrast, a high-quality large
image classifier like VGG-16 readily separates these features, providing
evidence that such model understands the concepts being extracted.

8.3 Other Considerations
How complex must the concept learning model be? We

ran an ablation study where we increased and decreased model
complications a little by adding or removing hidden layers. Additional
layers generally make convergence harder, and removing layers lowers
the model accuracy significantly (see supplemental materials).

Fig. 10. The precision curves for three concept extractors (standard
objects, bobby cars, dogs) trained with two different deep embeddings:
VGG-16 and FCN. The VGG-16 model is better trained than the FCN
model and the concept extractors using deep embeddings from VGG-16
(dotted lines) outperform the ones from the FCN model (solid lines).

How should we prioritize the display of active learning
candidate images? Instead of the common practice of letting users
focus on images where the active learning model is least confident,
we instead focus on identifying confident but wrong images from the
perspective of the base model. This choice maximizes the performance
of the concept model in its most confident predictions, which matches
the goal of ConceptExtract better: extracting human understandable
concepts via exemplar images.

How should users localize class information in images?
There are two natural candidate UI techniques: rectangular brushing
or lassoing [30]. We hypothesized that lassoing a detailed outline of
the concept instead of a rectangle would increase the accuracy of the
concept extractor. After running an experiment on FCN and VGG-16,
we saw no significant difference in model performance for these two
methods. Thus we choose the simpler UI: brushing.

9 LIMITATIONS, FUTURE WORK, AND CONCLUSION

Although we have shown that our prototype system can outperform
standard active learning approaches (the baseline model), there are still
a number of limitations to be addressed in the future. Most importantly,
we would like to understand specifically what parts of the interface
provide the most benefit for the human-in-the-loop approach? For
example, how important is the exploratory clustering we provide during
the active learning process? How do different modules affect the choice
the user makes in selecting image patches? Would a different image
patch layout help? These questions also will probe our understanding
of the role of human expertise in the process.

Secondly, the current system supports a limited number of training
data and image patches, and the user interface choices we made would
not be effective under a larger number of classes and image samples.
Although it is always possible to sample a small number of images
from the training set to present to a user, a full study of the impact of
choosing to show more (or fewer) images remains necessary.

Finally, a full evaluation in real-world application scenarios remains
needed to complement our preliminary expert evaluation. For future
machine learning interpretability practice, we would like to study more
examples about how machine learning experts use these concept-based
explanations to improve and understand their models.

In conclusion, we presented a novel approach for extracting
concepts to help interpret neural networks, and contributed the use of
a visualization-assisted active learning loop to extract interpretable
concepts. We integrate the full pipeline into an interactive visualization
system, ConceptExtract. Through case studies and experimental
validations, we show our approach can extract concepts that are both
human understandable and customizable based on the user’s interest.

REFERENCES

[1] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim.
Sanity checks for saliency maps. In Proceedings of the 32Nd International
Conference on Neural Information Processing Systems, NIPS’18, pp. 9525–
9536. Curran Associates Inc., USA, 2018.

[2] J. Ba and R. Caruana. Do deep nets really need to be deep? In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, eds.,
Advances in Neural Information Processing Systems, vol. 27. Curran As-
sociates, Inc., 2014.

[3] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Mü ller, and
W. Samek. On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation. PLOS ONE, 10(7):1–46, 07
2015. doi: 10.1371/journal.pone.0130140

[4] G. Bansal, B. Nushi, E. Kamar, D. S. Weld, W. S. Lasecki, and E. Horvitz.
Updates in human-ai teams: Understanding and addressing the perfor-
mance/compatibility tradeoff. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):2429–2437, Jul. 2019. doi: 10.1609/aaai.
v33i01.33012429

[5] M. Bojarski, A. Choromanska, K. Choromanski, B. Firner, L. J. Ackel,
U. Muller, P. Yeres, and K. Zieba. Visualbackprop: Efficient visualization
of cnns for autonomous driving. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4701–4708, 2018. doi: 10.1109/
ICRA.2018.8461053

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
Dec. 2011. doi: 10.1109/TVCG.2011.185

[7] C. J. Cai, E. Reif, N. Hegde, J. D. Hipp, B. Kim, D. Smilkov, M. Wat-
tenberg, F. B. Viégas, G. S. Corrado, M. C. Stumpe, and M. Terry.
Human-centered tools for coping with imperfect algorithms during medi-
cal decision-making. CoRR, abs/1902.02960, 2019.

[8] C. Chen, O. Li, A. Barnett, J. Su, and C. Rudin. This looks like that:
deep learning for interpretable image recognition. ArXiv, abs/1806.10574,
2018.

[9] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[10] E. Choi, M. T. Bahadori, J. Sun, J. A. Kulas, A. Schuetz, and W. F. Stewart.
Retain: An interpretable predictive model for healthcare using reverse
time attention mechanism. In NIPS, 2016.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255, 2009. doi: 10.
1109/CVPR.2009.5206848

[12] R. Fong and A. Vedaldi. Interpretable explanations of black boxes by
meaningful perturbation. CoRR, abs/1704.03296, 2017.

[13] A. Ghorbani, J. Wexler, J. Y. Zou, and B. Kim. Towards automatic
concept-based explanations. In Advances in Neural Information Process-
ing Systems, pp. 9273–9282, 2019.

[14] M. Grinberg. Flask web development: developing web applications with
python. ” O’Reilly Media, Inc.”, 2018.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90

[17] M. Hind, D. Wei, M. Campbell, N. C. F. Codella, A. Dhurandhar, A. Mo-
jsilović, K. Natesan Ramamurthy, and K. R. Varshney. Ted: Teaching ai
to explain its decisions. In Proceedings of the 2019 AAAI/ACM Confer-
ence on AI, Ethics, and Society, AIES ’19, p. 123–129. Association for
Computing Machinery, New York, NY, USA, 2019. doi: 10.1145/3306618
.3314273

[18] D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen. Population based
augmentation: Efficient learning of augmentation policy schedules. CoRR,
abs/1905.05393, 2019.

[19] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics, 25(8):2674–2693, 2019. doi: 10
.1109/TVCG.2018.2843369

[20] F. Hohman, H. Park, C. Robinson, and D. H. Polo Chau. Summit: Scaling
deep learning interpretability by visualizing activation and attribution sum-
marizations. IEEE Transactions on Visualization and Computer Graphics,

26(1):1096–1106, 2020. doi: 10.1109/TVCG.2019.2934659
[21] K. Holstein, J. Wortman Vaughan, H. Daumé, M. Dudik, and H. Wallach.

Improving Fairness in Machine Learning Systems: What Do Industry
Practitioners Need?, p. 1–16. Association for Computing Machinery, New
York, NY, USA, 2019.

[22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2261–2269, 2017. doi: 10.
1109/CVPR.2017.243

[23] B. Kim, M. Wattenberg, J. Gilmer, C. J. Cai, J. Wexler, F. B. Viégas, and
R. Sayres. Interpretability beyond feature attribution: Quantitative testing
with concept activation vectors (tcav). In ICML, 2017.

[24] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum. One shot
learning of simple visual concepts. Cognitive Science, 33, 2011.

[25] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense
object detection. In 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 2999–3007, 2017. doi: 10.1109/ICCV.2017.324

[26] Y. Liu, E. Jun, Q. Li, and J. Heer. Latent space cartography: Visual analysis
of vector space embeddings. Computer Graphics Forum, 38:67–78, 06
2019. doi: 10.1111/cgf.13672

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3431–3440, June 2015. doi: 10.
1109/CVPR.2015.7298965

[28] S. Lundberg and S. Lee. A unified approach to interpreting model predic-
tions. CoRR, abs/1705.07874, 2017.

[29] Y. Ming, P. Xu, H. Qu, and L. Ren. Interpretable and steerable sequence
learning via prototypes. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’19, p. 903–913. Association for Computing Machinery, New York, NY,
USA, 2019. doi: 10.1145/3292500.3330908

[30] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari. Extreme
clicking for efficient object annotation, 2017.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing
Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

[32] V. Petsiuk, A. Das, and K. Saenko. RISE: randomized input sampling for
explanation of black-box models. CoRR, abs/1806.07421, 2018.

[33] P. Pinggera, S. Ramos, S. Gehrig, U. Franke, C. Rother, and R. Mester.
Lost and found: detecting small road hazards for self-driving vehicles.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1099–1106, 2016. doi: 10.1109/IROS.2016.7759186

[34] M. T. Ribeiro, S. Singh, and C. Guestrin. ”why should i trust you?”:
Explaining the predictions of any classifier. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, pp. 1135–1144. ACM, New York, NY, USA, 2016.
doi: 10.1145/2939672.2939778

[35] C. Seifert, A. Aamir, A. Balagopalan, D. Jain, A. Sharma, S. Grottel, and
S. Gumhold. Visualizations of Deep Neural Networks in Computer Vision:
A Survey, pp. 123–144. Studies in Big Data. Springer, Germany, 2017. doi:
10.1007/978-3-319-54024-5 6

[36] O. Sener and S. Savarese. Active learning for convolutional neural net-
works: A core-set approach. In International Conference on Learning
Representations, 2018.

[37] B. Settles. Active learning literature survey. University of Wisconsin,
Madison, 52, 07 2010.

[38] B. Settles and M. Craven. An analysis of active learning strategies for
sequence labeling tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’08, p. 1070–1079.
Association for Computational Linguistics, USA, 2008. doi: 10.5555/
1613715.1613855

[39] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
CoRR, abs/1312.6034, 2013.

[40] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv 1409.1556, 09 2014.

[41] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. How can we fool
lime and shap? adversarial attacks on post hoc explanation methods, 2019.

[42] T. Spinner, J. Körner, J. Görtler, and O. Deussen. Towards an interpretable
latent space : an intuitive comparison of autoencoders with variational

autoencoders. In Proceedings of the Workshop on Visualization for AI
Explainability 2018 (VISxAI), 2018.

[43] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving
for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–9, 2015. doi: 10.1109/CVPR.2015.7298594

[45] G. Torlai and R. G. Melko. Latent space purification via neural density op-
erators. Phys. Rev. Lett., 120:240503, Jun 2018. doi: 10.1103/PhysRevLett
.120.240503

[46] L. van der Maaten and G. Hinton. Visualizing high-dimensional data using
t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008.

[47] A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking.
In Proceedings of the European Conference on Computer Vision, vol. 5305,
pp. 705–718, 10 2008. doi: 10.1007/978-3-540-88693-8 52

[48] K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin. Cost-effective active
learning for deep image classification. IEEE Transactions on Circuits and
Systems for Video Technology, 27:1–1, 01 2016. doi: 10.1109/TCSVT.
2016.2589879

[49] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum. Learning
a probabilistic latent space of object shapes via 3d generative-adversarial
modeling. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, pp. 82–90. Curran Associates
Inc., USA, 2016.

[50] D. Yoo and I. Kweon. Learning loss for active learning. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
93–102, 2019.

[51] M. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In Computer Vision, ECCV 2014 - 13th European Conference,
Proceedings, vol. 8689 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pp. 818–833. Springer Verlag, 2014. doi: 10.
1007/978-3-319-10590-1 53

[52] Q. Zhang, Y. N. Wu, and S. Zhu. Interpretable convolutional neural
networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8827–8836, June 2018. doi: 10.1109/CVPR.2018.00920

[53] Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu. Interpreting cnns via decision
trees. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6254–6263, 2019. doi: 10.1109/CVPR.2019.
00642

[54] R. Zhang, P. Isola, A. Efros, E. Shechtman, and O. Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In Proceedings -
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 586–595. IEEE Computer
Society, Dec. 2018. doi: 10.1109/CVPR.2018.00068

[55] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6230–6239, 2017. doi: 10.1109/CVPR.2017.660

