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Fig. 1. ConceptExtract supports human-in-the-loop visual concept learning and uses the extracted visual concepts for fine-grained 
model interpretation, diagnostics and comparison. (A) an image patch view displays small patches or super-pixels (Fig. 4) segmented 
from the original images with informative overlays to facilitate interactive visual concept extraction. It displays visually similar patches in 
close proximity without overlap. Here, the overlay shows pixel-wise prediction accuracy for an image segmentation model for road scene 
understanding, and the border color of each image patch encodes a concept confidence score; (B) a cross-filter panel enable filtering 
patches based on the concept confidence scores and other statistics; (C) an active learning labeler panel allows easy specification of 
positive and negative samples for training models; (D) a model analysis panel using the learned visual concepts (shadow, cloud ) for 
fine-grained model interpretation, diagnostics and comparison. (E) a model summary panel showing a summary of the target model 
performance. This figure shows ConceptExtract being used to analyze an image segmentation model for road scene understanding in 
autonomous driving scenarios. Please refer to Section 7.2 for more detail. 

Abstract—The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve 
various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc 
interpretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task 
that is not easily addressed with automatic approaches. We present a novel human-in-the-loop approach to generate user-defined 
concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge 
and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an 
interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract 
human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions, 
compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning 
approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect 
model performance, we develop the corresponding data augmentation strategy that consistently improves model performance. 
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1     INTRODUCTION 

Deep neural networks have achieved state-of-the-art performance in 
many challenging computer vision tasks and are being widely adopted 
in many real-world application scenarios such as autonomous driving. 
As a result, recent emphasis on deep learning models has moved from 
model accuracy alone towards issues such as model interpretability. 
The machine learning community has realized the necessity of making 
the models more understandable, especially since these models can 
easily have hundreds of millions of parameters with highly non-linear 
transformations. First of all, the model/application developers might 
want to scrutinize the decisions made by machine learning models 
and use them more responsibly [21]. If the model developers can 
understand the weaknesses of their AI models, they could minimize 
the potential errors or biases of training data in real-world applications. 



This is orthogonal to model accuracy: a recent study by Bansal et 
al. [4] shows that increasing AI accuracy may not bring the same 
improvements for performance if the human cannot develop insights 
into the AI system. Secondly, improving model interpretability can 
facilitate model refinement. 

For instance, when designing AIs for autonomous driving, the de- 
tection of unexpected road hazards such as lost cargo [33] is a typical 
image segmentation task in computer vision. When model developers 
train a neural network like Fully Convolutional Network (FCN) [27] or 
DeepLabV3 [9] for lost-cargo detection, the accuracy is relatively low 
and the developers have difficulties in finding potential root causes [25], 
which could be the lighting conditions on the road, the visual features 
of the lost-cargo objects themselves or others. Identifying such poten- 
tial root causes can help develop mitigation strategies (e.g. applying 
appropriate data augmentations) to further improve the model, and 
model interpretation is the key to discover such root causes. 

To tackle the issue of interpretability in neural networks, many 
techniques [1, 35] have been proposed to help people understand model 
predictions. TCAV (Testing with Concept Activation Vectors) and the 
follow-up work ACE aim to understand what signals the model uses for 
predicting different image labels [13, 23]. They generate a measure of 
importance of a visual concept (e.g. wheel, glass) for a prediction (e.g. 
predicted as a car) in a trained model. However, the concepts generated 
by automatic clustering methods may not match human concepts. 

In other words, such methods cannot guarantee that image 
patches which are relatively close and gathered in a latent space 
are semantically meaningful to humans as a concept. This mis- 
match provides the inspiration for our work. We propose a visual 
analytics framework to integrate human knowledge in the visual con- 
cept extraction process and use the identified concepts to analyze poten- 
tial causes of model errors and develop mitigation strategies. Specifi- 
cally, we propose a novel combination of an active learning process 
with a user interface expressly designed for fast labeling of images 
to train a concept extractor network that identifies patches contain- 
ing a common concept. Our system ConceptExtract enables users to 
explore image patches, control the active learning process and use the 
resulting concepts for model comparison and diagnosis. We present 
example usage scenarios for different datasets and machine learning 
tasks, including image classification for ImageNet [11] and image 
segmentation for the lost cargo challenge [33]. We analyze a variety 
of neural network architectures, including ResNet [15], VGG [40], 
FCN [27] and DeepLabV3 [9], demonstrating the generality of our 
proposed approach. Using ConceptExtract, users can extract seman- 
tically meaningful concepts, provide concept-based explanations for 
different machine learning models and compare them. Our quantitative 
evaluation (presented in Section 8) shows this approach produces con- 
cept extractors accurately and more efficiently than random labeling or 
traditional active learning approaches. Furthermore, we show the valid- 
ity of the concepts we extract by following up the concept extraction 
procedure with an associated data augmentation strategy that improves 
the performance of model under analysis. 

In summary, we contribute: 

• A novel visual analytics framework supporting a human-in-the- 
loop, active learning based approach to extract visual concepts 
for model interpretation, as well as identifying visual concepts 
that negatively affect model performance (Section 4); 

• A prototype system implementing our proposed human-in-the- 
loop workflow, featuring scalable image patch exploration, visual 
cues and interactive filters for active learning and a rich set of 
model diagnostics and comparative analysis visualizations (Sec- 
tion 5); 

• Two case studies and quantitative experiments demonstrating the 
value of using ConceptExtract for diverse machine learning tasks 
and datasets (Section 7). 

cepts can help develop data augmentation strategies for model 
performance improvement (Section 8). 

 
2 BACKGROUND 

2.1 Deep Neural Networks 
In this paper, we use neural networks whose first layer has as many 
units as there are pixels in the input image. To exploit spatial locality, 
current deep neural networks (DNNs) use convolutional layers, typi- 
cally followed by nonlinear activation functions. After a sequence of 
such layers, a fully-connected layer is usually present before the model 
output. This basic setup can be used in various tasks by assembling 
different layers; each potential configuration is called an architecture. 

 
2.2 Deep Embeddings 
To obtain image patches that potentially contain the same concept, we 
need some approach to measure image similarity. However, direct 
pixel difference measurements fail to take into account misalignment, 
distortions, lighting changes, and so on. To solve this problem, we 
use deep embeddings as a representation of the image patches. As an 
image is passed as an input through a DNN model, the output after 
each hidden layer is an embedding in that latent space. These deep 
embeddings provide hints for the model to distinguish different images. 
Previous work shows that euclidean distance1 in the latent space is 
an effective perceptual similarity metric [54]. In this paper, we resize 
inputs to match the architecture’s first layer and choose the embeddings 
from a low-dimensional layer as the latent representation. (In this paper, 
we use deep embedding interchangeably with latent representation.) 

 
2.3 Active Learning 
Active learning is a semi-supervised machine learning method where 
the learning algorithm can interactively query a user for labeling in- 
stances. Instead of manually labeling all the unlabeled instances, active 
learning makes a priority to label the data that have the highest impact 
on training the model. This method is widely used in training neural net- 
works [36, 48, 50]. Commonly used prioritizing methods include model 
confidence, margin sampling, and entropy [38]. Once an approach has 
been chosen to prioritize the labeling, this process can be iteratively 
repeated: a small subset of data with the highest prioritization scores 
will be presented to the user to assign labels. After that, the DNN can be 
trained on the manually labeled data. Once the model has been trained, 
the unlabeled data points can be run through the model to update their 
prioritization scores, which significantly reduces the overall labeling 
burden. In this paper, we show that allowing a user to pick from a set of 
carefully laid-out images produces a more efficient sequence of training 
models than is possible with pure sequential active learning. 

 
2.4 Concept Annotations 
In image classification, all possible categories are assumed to be known 
to the model, and images are typically assumed to belong to a single 
class. However, an image may be complex (for example, it can contain 
various objects and visual patterns). We refer to these “potential” 
labels of these objects as Concept Annotations. They are different from 
the classification labels, and an image may admit multiple concept 
annotations. Concept annotations are not used in training the network 
for the task, but they can provide the grounding necessary for model 
explanations. 

 
3 RELATED   WORK 

The goal of providing a human level of understanding of a deep 
learning model now drives an entire subfield of machine learning 
research. While some work focuses on building inherently explainable 
models [2, 8, 10, 17, 29, 52, 53] to achieve interpretability, we in this 
project focus on post-hoc explanations, interpreting models that were 
trained without any consideration to interpretability. 

• Quantitative experiments that show ConceptExtract produces con-    
cepts faster than traditional active learning, and that these con- 1The other common metric option could be cosine similarity. 



Post-hoc Explanations   Saliency methods form a popular class 
of tools that provide localized explanations for each data sample by 
calculating the importance of each input feature (typically pixels). Back- 
propagation methods like Gradients [39], DeconvNets [51] and Guided 
Backpropagation [43] compute the gradient of the network’s prediction 
with respect to the input. LRP [3] redistributes the relevance of each 
neuron through additive functions that conserve a measure of total im- 
portance from layer to layer. VisualBackProp [5] uses deconvolutions to 
arrive at a pixel-based importance metric. While saliency methods can 
illustrate the attention of deep learning models, the resulting heatmap it- 
self can be hard to interpret and assess. The study by Adebayo et al. [1] 
shows that some of these popular methods fail the sanity check. Data 
perturbation methods [12, 32, 51] use small prediction changes to gener- 
ate interpretations. In particular, LIME [34] and SHAP [28] change the 
input in a controlled fashion and observe the effect on the output. Slack 
et al. demonstrate that LIME and SHAP can be easily fooled by crafting 
adversarial classifiers, showing a potential general weakness of pertur- 
bation methods [41]. While most saliency methods focus on a single 
data sample, our system adopted concept-based explanations to provide 
a higher level interpretation that aligns better with human knowledge. 

Inherently interpretable models One way to achieve inter- 
pretability is by building models which are inherently explainable. 
Mimic learning [2] replaces the deep neural networks with models that 
are easier to explain. Choi et al. [10] propose RETAIN, a sequence 
model with an attention mechanism for highlighting the most meaning- 
ful visits of the patients for their diagnosis results. Zhang et al. [52, 53] 
propose methods that enforce the interpretability of high-level image 
filters through disentangled representations. ProtoPNet [8] is a deep 
network architecture that picks out essential patterns in the image and 
generates a prediction by comparing those patterns to typical classes 
it has seen before. Ming et al. [29] combines prototype learning with 
deep sequence models to achieve interpretability. TED [17] suggests 
that while training a model, the objectives should combine both the 
explanations and the labels. However, currently how to combine them 
with popular architectures remains unsolved, and training such models 
are often time-consuming. Our approach focuses on diagnosing trained 
model and doesn’t need to retrain the original model during the analysis. 

Visualizing latent spaces A latent space in deep learning is a 
reduced-dimensionality vector space of a hidden layer. The neural 
network compresses the input and forms a new low-dimensional repre- 
sentation with interesting properties [45, 49]. Here, we employ latent 
space techniques to build concept extraction models and provide a good 
spatial arrangement for users to select images to label. Recently, some 
interactive visual systems have emerged to facilitate the exploration of 
the latent space. Spinner et al. [42] propose an interactive visualization 
for comparing two different models by exploring their latent spaces. Liu 
et al. [26] propose LSC (Latent Space Cartography), a comprehensive 
system for mapping and comparing meaningful semantic dimensions 
within latent space. SMILY [7] is an interactive system to help patholo- 
gists search for similar medical images of patients based on the users’ 
preferences. We use latent spaces indirectly as the input for our concept 
extraction networks and use latent spaces to drive the layout of the 
image patch view. More than that, by utilizing different visualization 
techniques, ConceptExtract can help the users easily explore the dataset 
and summarize their findings. 

4 TASKS AND WORKFLOW 

4.1 Task Analysis 
Model developers encounter different problems while diagnosing 
their model to make improvements. Developers want to understand 
predictions and find the leading causes of a specific result. For example, 
if a classification model predicts an image as a “fish”, is it because 
it recognizes the fish body, or is it using contextual cues in the image 
such as a human holding it or a container carrying the fish?   This 
same question has been studied in Summit [20] as well. Another main 
concern is the identification of systematic causes of misclassification. 
When developing a semantic segmentation model for analyzing road 
scenes in an autonomous driving application, developers find that a dog 

is incorrectly detected under a tree shadow. Is this just a coincidence or 
a common phenomenon happening across the entire dataset? Answer- 
ing these questions not only help the developers better understand and 
anticipate the model behavior, but also helps them develop effective 
strategies to refine the model and improve its performance. 

With ConceptExtract, we seek to give model developers a visual ana- 
lytic system so they can interpret, diagnose and compare deep learning 
models with human-friendly, concept-based explanations. Concretely, 
based on previous discussions in visual analytics for deep learning [19] 
and the requisite expertise of the co-authors from past experience, we 
start by identifying a set of analytic tasks to be supported in the system. 

T1: Summarize model behavior. The system should provide a 
summary of the model to the developers to start with. Deep learning 
models can have different performance metrics depending on the task, 
e.g. precision in image classification model and IoU (Intersection over 
Union) accuracy in semantic segmentation models; prompt access to 
these measures is a requirement. 

T2: Browse and explore image patches/super-pixels. It is 
challenging for users even to know what visual concepts exist in the 
data. Since each dataset potentially contains many concepts, it is 
important for the user to be able to extract visual concepts that highly 
influence model decision. The system, therefore, needs to provide an 
overview of the image patches with a good layout strategy, as well as 
also provide a set of filters to help users quickly identify interesting 
data samples and decide which image patches to study first. 

T3: Train and evaluate concept extraction models. Since no 
ground truth labels exist for visual concepts, and it is infeasible for users 
to manually label a large number of images, we propose using a separate 
concept extraction active learning loop to efficiently derive a set of 
image patches containing a visual concept. The system should involve 
users’ human knowledge and give them the flexibility to choose and 
customize any potential concept they recognize in the image patches. It 
should also provide methods for the user to evaluate whether the model 
has sufficiently learnt the visual concept. 

T4: Analyze how visual concepts affect model decisions. Af- 
ter extracting human-friendly visual concepts, the system should sup- 
port using them to understand model behavior. The system should help 
users systematically analyze how important the visual concepts are for 
predicting different classes and analyze how the presence of different 
visual concepts in images affects model performance (e.g. shadow 
prevents detection of objects on the road). 

T5: Compare different models.    In addition to investigating 
the target model, the system should further support using the visual 
concepts extracted for fine-grained model comparison, esp. how the 
performance of the models differ on images containing different visual 
concepts. This helps reveal the strength and weaknesses of different 
models. 

4.2 Workflow 
To integrate the tasks described above, we present a workflow to help 
guide the user through the analysis steps in ConceptExtract. We will 
refer to Fig. 2 throughout the section. For the specific settings of the 
workflow in real-world applications, please refer to Section 7.1 and 
Section 7.2 for more details. 

The workflow starts with a preprocessing stage (left portion) with 
the available image data and the target model. In the preprocessing 
stage, the original images are segmented into patches using fixed 
window sizes or super-pixel segmentation algorithms [47]. The 
image patches/super-pixels are then resized to the input scale and 
fed to the target model. Their latent representations are extracted 
at a selected layer in the target model for visual concept learning. 
The visual concept learning stage (center portion) uses concept 
extractor networks on top of the latent representations to learn 
human-understandable concepts and retrieve image patches containing 
those concepts for model analysis (T3). Individual networks with 
the same architecture but different weights are trained to recognize 
different visual concepts through an active learning process. 



 
Fig. 2. The workflow of ConceptExtract. In the preprocessing stage, the images are segmented into image patches or super-pixels. The latent 
representations of these image patches/super-pixels are extracted from a selected layer in the target model. The visualization interface layout the 
image patches such that similar patches are spatially close. Users can easily identify and create new visual concepts and overlay data such as target 
model misclassifications to focus on problematic cases. In the visual concept learning stage, we utilize concept extractor networks to retrieve image 
patches containing the same concept (sky and shadow in the figure). The concept extractor networks take the latent presentations of the image 
patches as inputs and output concept confidence scores in [0, 1]. We employ a visualization assisted active learning process to train the concept 
extractor networks. The learned visual concepts are used in the model analysis stage for model interpretation and comparison with visualizations 
such as TCAV scores charts and confusion matrices. 

To help users create meaningful novel visual concepts, the system 
provides an overview of the image patches and projects them in a way 
such that visually similar image patches are close to each other. The 
user can also interactively overlay a variety of information on top of the 
image patches such as accuracy, ground-truth and predicted labels to pri- 
oritize looking for visual concepts that affect model performance (T2). 

To support effective novel visual concept learning and reduce user 
labeling effort in the active learning process, we propose a hybrid ap- 
proach that tightly couples visualization and computational techniques 
(T3). For each image patch, the concept extractor network produces a 
concept confidence score. The concept confidence score ranges from 0 
to 1, where 0 is for confidently negative (the image patch does not con- 
tain the visual concept), 1 is for confidently positive (the image patch 
must contain the visual concept), and 0.5 is for not sure. The system 
visualizes the concept confidence score and supports interactive data fil- 
tering based on it to help the users prioritize labeling more informative 
examples for model training. In particular, we found that labeling 
hard negative samples [37], which are image patches confidently 
but wrongly classified, can greatly facilitate the training process. 
The user can also filter the image patches with the most confident pre- 
dictions to verify if the concept extractor has been sufficiently trained to 
recognize visual concepts that align with human-knowledge. To further 
reduce user effort and recognize novel visual concepts with very few 
labeled examples provided by the user, we also use a data augmentation 
strategy [18] which has been proven to be effective in similar scenarios 
such as few-shot learning or zero-shot learning [24]. The data augmen- 
tation method selects each labeled image patch, randomly applies two 
categories of augmentation policies: (1) shape policies like shearing, 
flipping, rotating, and (2) color policies like gray-scaling and blurring. 

After obtaining a set of visual concepts and the corresponding image 
patches, the user can move to the model analysis stage (right portion) 
and perform model interpretation, diagnostics and comparison (T4 
and T5) using TCAV scores and confusion matrices. The visualization 
shows fine-grained analysis, including how each visual concept 
affects the model’s and how the model performances differ on images 
containing different visual concepts. 

 
5 SYSTEM     DESCRIPTION 

As shown in Fig. 1, the visual interface consists of a set of visualization 
modules to display information like model summary (T1), visual con- 
cept images, and a series of interactions to support image patch explo- 
rations and the active learning process for training the concept extractor 
network. We will discuss the main components in ConceptExtract and 
how the these components together support the workflow ( Fig. 2 ). 

5.1 The Image Patch View 

The image patch view ( Fig. 1 (A)) provides an overview of the image 
patches to help the user quickly explore the data collections and 
identify interesting visual concepts (T2). We apply t-SNE [46] to the 
image patches’ latent representations to get a 2D layout. Since directly 
plotting the image patches according to the projected coordinates 
will result in severe visual clutter, we use a de-cluttering algorithm 
to layout the image patches in non-overlapping grids while still keep 
visually similar image patches close to each other. Specifically, we 
partition the canvas area into grids with identical size rectangles. Then 
we randomize the image patch sequence. For each image patch, we 
find the grid cell containing the 2D coordinates. If the grid is empty, 
we plot the image patch on the grid. If the grid is already occupied, the 
layout algorithm will search for the nearest neighbor grids to fill. When 
no empty grid is available on the screen, the image patch will be hidden 
temporarily. Navigation operations like zooming in will increase the 
number of grid cells available. When a different scale is reached, we re- 
plot the image patch view to allow more image patches to be displayed 
on the screen. We bring similar image patches as close as possible 
through this layout while reducing visual clutter due to overdraw. 

A control panel on top of the image patch view allows users to 
overlay additional information on the image patches as well as filter 
the data. When the users first explore the data, it is challenging for 
them even to know where to start their study. The “cluster” filter 
( Fig. 1 (b)) gives the user the option to plot only image patches in 
the selected clusters precomputed using algorithms such as k-means. 
Users can also choose color overlays or border highlights on the image 
patches to show information such as ground-truth, model predictions 
and model accuracy ( Fig. 1 (a)). For example in Fig. 1(A), for an 
image segmentation model, the visualization displays pixel-wise 
image segmentation accuracy where red indicates the wrong prediction 
and blue indicates the right prediction. In another example shown 
in Fig. 4(a), the visualization uses border color to indicate whether 
the source image of a super-pixel is correctly classified in an image 
classification model. With different overlays, users can focus on 
particular image patches to extract the relevant visual concept. For 
example, the user is usually interested in image patches related to 
wrong predictions ( Fig. 1 (d)) and extracting visual concepts from 
those image patches could better benefit model diagnostics. 

As a crucial component in the active learning process, the control 
panel also has a range slider ( Fig. 1 (c)) to help users efficiently filter 
the data based on the concept confidence score of each image patch for 
the concept currently being trained. The user can also draw the concept 
confidence score as the border color of the image patches in a diverging 
color scheme, as shown in Fig. 1. 



 
 

Fig. 3. We apply ConceptExtract to analyze image classification and segmentation DNNs: (A) ResNet-101 [15] trained on ImageNet (B) a Fully 
Convolutional Network (FCN) [27] with a DenseNet encoder [22] and a Pyramid Scene Parsing (PSP) [55] structure trained for road image 
segmentation. We extract deep embeddings from the smallest hidden layers available. The chosen layers are highlighted in the architecture diagrams. 
The concept extractor network used for each architecture is shown on the right. 

5.2 The Training View 
The training view ( Fig. 1 (C)) provides a frontend to control the 
active learning process (T3). It contains two parts: a patch details & 
interaction area (( Fig. 1 (e)) for the user to assign concept labels and a 
training samples list ( Fig. 1 (f)) for showing selected images and their 
training status. The selected image patch from the image patch view 
will be magnified, and the related information will be presented such as 
the source of the image patch. The user can directly add any patch that 
doesn’t contain the concept into the negative training set by selecting 
on the context menu. To add positive samples, the user either crops a 
rectangle on the image that contains the concept and discards the rest 
of the pixels, or directly selects the whole image patch/super-pixel as 
a positive sample. All the selected positive and negative samples will 
be displayed in the training samples list ( Fig. 1 (f)). Concepts can be 
named and saved for use in future sessions. While the active learning 
network is trained, the user can continue adding different image patches 
into the training set, or end that training stage, save the concept extractor 
network and the retrieved images containing the concept. 

5.3 The Model Analysis View Using Visual Concepts 
The Model Analysis View uses the learned visual concepts to sup- 
port fine-grained model interpretation, diagnostics and comparison 
( Fig. 1(D) ). After a user completes a new concept extractor’s training 
process, ConceptExtract shows the record of this concept in this area, 
including the concept name and the image patches with the highest 
confidence scores. A barchart shows TCAV scores for each visual con- 
cept, and the length of each bar indicates the importance of this concept 
for predicting a specific class (T4). To gauge a potential weakness of 
the model being analyzed with respect to the concepts, we choose for 
each concept the top 50 image patches based on the concept confidence 
score, find the original images of these image patches and compare 
predictions of our target model with the ground-truth using a confusion 
matrix (T4). Each row in the confusion matrix represents the ground 
truth class, and each column represents the predicted class. The values 
on the matrix diagonal show the proportion of the data samples cor- 
rectly classified in each class. We use a sequential colormap to encode 
the proportion ranging from 0 to 1. With the confusion matrices, the 
user can analyze whether the presence of a certain visual concept in the 
image leads to more model errors. An example is shown in Fig. 1(g), 
where the model being analyzed has worse performance on images 
containing the shadow concept. 

We can also use the learned visual concepts to to compare different 
models visually. For the two selected models from a list, we compute 
their confusion matrices for each of the visual concepts and then directly 
calculate the difference between them. The differences are displayed 
using a diverging colormap, where red indicates negative values and 
blue indicates positive values in the matrix. If a second model has 
better performance than the first one, the diagonal entries should show 
more positive values (blues) in the matrix and vice versa. For example, 

in Fig. 6(b) we compare DenseNet to ResNet on images containing 
the visual concept sky. Since there are more red colored entries on the 
diagonal, we can conclude that DenseNet has worse performance on this 
set of images. Such comparison reveals the strength and weaknesses of 
each model and helps identify opportunities to use model ensembles to 
improve prediction accuracy. 

 
5.4 Other Views 

The model summary view ( Fig. 1 (E)) shows basic information like 
the datasets and the model types. We use both bar charts and confusion 
matrices to show model performance on different classes (T1). A 
cross-filter view ( Fig. 1 (B)) shows the distribution of image patches 
based on different features, supporting quick retrieval and comparisons 
(T4). In this view, each image patch could be treated as a multivariate 
data sample, including variables like prediction accuracy and concept 
confidence scores for the existing concept extractors. A barchart is 
displayed for each of these variables. To help the user quickly identify 
an interesting target and generate new facts, the crossfilter view is also 
connected with the image patch view. Only the selected image patches 
in the crossfilter will be plotted in the image patch view. These concept 
filters can help the user quickly identify confident or confused image 
patches for different concepts. It is particularly useful when the user 
has trained multiple visual concepts and would like to study how the 
learned concepts correlate with each other. 

 
6 SYSTEM     IMPLEMENTATION 

Our system design separates the frontend for data visualization and 
the backend for data storage and active learning. For the backend 
of the system, we use Pytorch [31] to implement the target machine 
learning models including DenseNet-FCN (We use the implementation 
in this repository: https://github.com/sagieppel/Fully-convolutional- 
neural-network-FCN-for-semantic-segmentation-with-pytorch.) and 
ResNet-101 [16], as well as other models for comparison including 
DeepLabV3+ [9], DenseNet [22], VGG [40]. We also use Pytorch 
to implement and train the concept extractor networks. To extract 
visual concepts, all the images are segmented into small image patches 
or super-pixels of different sizes. We use scikit-image (https://scikit- 
image.org/) for super-pixel extraction. The image patches or super- 
pixels are then scaled to the same size as the input of the target model. 
By running them through the target model, we extract and save the 
latent representation of these image patches (or super-pixels) at the 
selected layer. All image patches, along with their latent representations, 
ground-truth labels, predicted labels and (per-pixel) accuracy are stored 
in the backend system as binary files in the file system. The application 
web server is implemented with Flask [14]. For the frontend design, 
we mainly rely on two JavaScript libraries, React and D3 [6] and draw 
on both SVG and HTML5 Canvas for better performance. 



− 
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Fig. 4. (a) The user identifies that many stripe patterns are associated 
with erroneous predictions (b) Through active learning the concept ex- 
tractor network is able to accurately retrieve large amount of super-pixels 
containing the strip patterns. The stripe concept will be used for further 
model analysis. 

7 EXAMPLE   USAGE   SCENARIOS 

We demonstrate ConceptExtract in example usage scenarios on two 
different perception models for image classification and semantic seg- 
mentation tasks. By utilizing our system, interesting visual concepts are 
revealed in the models and the datasets. We further demonstrate how to 
use these concepts to help model interpretation, model comparison, and 
developing mitigation strategies for model performance improvement. 

7.1 ResNet-101 for Image Classification 
In this section, we demonstrate the application of ConceptExtract in 
analyzing an image classification model trained on ImageNet data. 
We show that the system can help extract semantically meaningful 
visual concepts. ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC) is a famous competition which has been held annually since 
2010. ILSVRC uses a subset of ImageNet [11] with roughly 1.4 million 
images belonging to 1000 categories. For simplicity, we choose a subset 
of ImageNet with 10 classes which are the 10 worst performing classes 
of the model (tench, tabby, tiger cat, tiger, barracouta, balloon, castle, 
church, parachute, vault). Also, most of the wrong predictions of 
these 10 classes made by the model are among the same 10 classes, for 
example, tench is often misclassified as another type of fish, tabby. In 
each class, we randomly sampled 200 images for analysis, which we 
think can be processed quickly by our system while generating enough 
concept patches. We analyze the pre-trained ResNet-101 [16] model 
from PyTorch with top-1 error 22.63% and top-5 error 6.44%. To 
extract concepts of different resolutions from these classes, we use the 
Quickshift algorithm [47] to compute a hierarchical segmentation of the 
images on multiple scales. For each image, Quickshift generates about 
12 super-pixels. After that, we resize these super-pixels to the original 
input size of the model and pad the empty pixels with neutral gray. 
We choose the final convolutional layer ( Fig. 3(A) ) with dimensions 
2048 × 7 × 7 to extract the latent representation of each super-pixel. 

Concept Extractor Network Setup Our concept extractor net- 
work ( Fig. 3(A) ) contains only two layers on top of the latent rep- 
resentation extracted from ResNet-101: one convolutional layer and 
one max pooling layer. A sigmoid function is applied after the max 
pooling layer to obtain a concept confidence score between 0 and 1 to 
predict whether the super-pixel contains the specified visual concept or 
not. This simple architecture is accurate enough for identifying concept 
images (see Section 8 for details), and training such a network will not 
take the user a lot of waiting time. For each stage, the neural net is 
trained until the validation loss does not decrease. We observe that in 

Fig. 5. (a) TCAV score shows that the human face is surprisingly im- 
portant for identifying the class tench, a type of fish. (b) stripes is an 
important visual concept for identifying tiger cat and tiger and is also the 
main reason that these two classes are often confused with each other. 
most cases the training stops at around 10 epochs. Note that only the 
weights in the concept extractor network are updated (and not the task 
model under analysis). The concept confidence scores are sent to the 
frontend after the training is done. They are displayed in the image 
patch view and can also be used to filter the image patches to find the 
most informative examples to label. To obtain more training data, we 
generate 200 images for both positive and negative training sets by 
data augmentation. The 200 images are generated by first randomly 
sampling from the available training data and then applying the data 
augmentation strategy. 

Extracting Visual Concepts The system initially displays all the 
super-pixels in a compact layout, generated from a t-SNE projection of 
the latent representation. The layout places semantically-similar super- 
pixels in clusters that can have associated concepts such as grass and 
sky. To prioritize finding concepts that affect model performance, the 
user can overlay predictive accuracy for each super-pixel. For example, 
one can observe a cluster of super-pixels showing orange and black 
strip patterns are often misclassified ( Fig. 4(a) ). The user therefore 
starts creating a new visual concept “orange and black stripe” by adding 
new labeled examples. After specified 4 to 5 positive and the same 
number of negative samples, the user can click on the “Train” button 
in the Labeler to start the first training stage for this concept extractor. 
The training time depends on the dimension of the latent representation 
and the GPU configuration. On a machine with a GTX 1070Ti GPU, 
it typically takes about 50 seconds to train one stage. Based on the 
returned concept confidence score, the user can use the filter to select 
more informative examples to label, esp. hard negative samples which 
are confidently but wrongly classified by the concept extractor. After 
several iterations, the user finds that almost all the super-pixels filtered 
with a range of high concept confidence score (e.g. 0.75 1.0) contains 
orange and black stripe patterns ( Fig. 4(b) ) and all the super-pixels 
filtered with low and medium concept confidence scores (e.g. 0.0 0.5) 
do not contain the stripe patterns. Therefore the user can consider the 
concept extractor network has successfully learned the orange and black 
strip concept and use it for model analysis and comparison. 

The user can continue exploring the image patch viewer and create 
new visual concepts following a similar process. For each new visual 
concept, an individual concept extractor network is created and trained. 
They all have the same architecture as described in Fig. 3(A). For 
example, she can train four separate concept extractor networks to 
identify visual concepts, including human face, fish, stripes, and sky. 

Model Analysis with TCAV Scores and Confusion Matrix 
From the TCAV scores, we can identify that the human face concept is 
highly relevant for predicting the class tench ( Fig. 5(a) ), a type of fish. 
This result aligns with the findings in Summit [20], a previous paper 
that also analyzes deep neural networks for ImageNet classification. 
They also found that predicting the class tench relies heavily on person 
related features. Notice that we use ResNet-101, not InceptionV1 [44] 
as in Summit. This leads to the hypothesis that the data distribution, in- 
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Fig. 6. The confusion matrices show pairwise model comparison, with 
fine-grained information about which model performs better on images 
containing a given concept. DenseNet performs better than ResNet on 
images containing human faces (a) but worse on images containing sky 
(b). The two models show complementary strength, suggesting that a 
model ensemble averaging their predictions outperforms both (c and d). 

stead of the model architecture, is causing the problem. Since the train- 
ing data contains a lot of images of person holding tench, both models 
automatically make use of such visual concept to perform classification. 

Based on the TCAV scores we can also observe that the three fre- 
quency confused classes tiger cat, tiger and tabby cat all uses stripes as 
a visual concept to perform classification ( Fig. 5(b) ). The confusion 
matrix shows that on images containing stripes, the model often make 
mistakes among the three types of feline animals. 

Compare Different Models The visual concepts extracted can be 
reused to obtain a fine-grained comparison between different models, 
which goes beyond simple benchmarks such as overall model accuracy. 
In particular, we can analyze which model is better at classifying images 
containing a certain concept. In this example, the user loads another 
state-of-the-art model DenseNet [22] to compare it with ResNet-101. 
Based on the confusion matrix the user observes that while DenseNet 
performs better than ResNet-101 on images containing visual concepts 
like human-face, it makes more mistakes on images containing the 
sky concept ( Fig. 6(a)(b) ). Based on such observation, the user 
hypothesizes that combining DenseNet and ResNet-101 may result 
in a stronger model. To verify such a hypothesis, we construct a 
simple ensemble model which takes the prediction (in the form of 
class probability) from both DenseNet and ResNet-101 and average 
the results to obtain the final class prediction. We further compare the 
ensemble model with DenseNet and ResNet-101 and observe that it 
indeed corrects the miss-classification of both models ( Fig. 6(c)(d) ). 
We further verify the results by comparing the overall accuracy on the 
ten classes and found that the ensemble model achieves 81.8% accuracy 
that outperforms both DenseNet (80.0%) and ResNet-101 (80.5%). 

 
7.2 FCN and Semantic Segmentation 
In this section, we will focus on presenting the insights discovered 
by ConceptExtract when analyzing an image semantic segmentation 
model for detecting unexpected objects on the road, usually lost cargos. 
The model is trained and tested on the public lost cargo dataset [33]. 
By utilizing our approach, we show that the model designers can obtain 
concepts that are both customized and human understandable. They 
can further utilize the insights generated from the concept to diagnose 
the model and improve model performance. 

The lost cargo challenge addresses the problem of detecting un- 
expected small obstacles on the road often caused by lost cargo. To 
achieve this goal, a Fully Convolutional Network (FCN) [27] with a 
DenseNet Encoder [22] and Pyramid Scene Parsing [55] ( Fig. 3(B) 
) is trained. We denote the model as DenseNet-FCN in our study. 

DenseNet-FCN performs semantic image segmentation by predicting a 
label for each pixel in the image. In this case, each pixel could belong 
to three different classes, including lost-cargo (obstacles), road, and 
background. As shown in Fig. 3(B), to extract the latent representations 
for concept learning, we chose the layer at the beginning of the decoder 
(dimension: 512   32    64) for two reasons: (i) the layer encodes both 
local and global information, (ii) the layer has the most compact size, 
which will benefit future computation and storage. 

For this task, since the model designers want to keep the context of 
potential concepts, we use rectangle boxes with three different sizes 
to obtain image patches for extracting concepts instead of segmenting 
the image into super-pixels. Since there are a large number of image 
patches (over 4 million), we sampled a subset of them for analysis. 
Furthermore, since the main task is to detect the lost cargo on the road, 
we chose all the image patches containing lost cargo (roughly 1000) and 
sampled around 1000 image patches containing the other two labels: 
road and background. In all, we have 2533 image patches for concept 
extraction and visualization. 

The lost cargo has two types of pixel annotations: the coarse ones 
including lost cargo (obstacle), road, and background; the fine ones for 
distinguishing specific lost cargo objects/obstacles in the images like 
boxes, balls, and so on. The coarse annotations are used by DenseNet- 
FCN for training and prediction. To quantitatively evaluate our concept 
extraction model, we use the fine annotations as groundtruth visual 
concepts. We pick a concept — dogs and trained the concept classifier 
for 4 iterations. Ten positive and ten negative images are selected 
for the initial stage, and for each of the rest stages, four positive and 
four negative images are added. The results are presented in Fig. 7. 
The figure plots the precision of the concept extractor when retrieving 
top-k image patches according to the concept confidence score. For 
each active learning stage, we can see a significant improvement in the 
precision of the predictions after the active learning process, especially 
for the top 50 image patches based on the concept score. 

As shown in Fig. 1(A), to prioritize the visual concepts that affect 
model performance, the user overlays the pixel accuracy of the model 
prediction on each image patch. While exploring these image patches, 
the user identifies that sometimes the lost cargo cannot be correctly 
detected when it is under a tree shadow ( Fig. 1(d)). Is this just a 
coincidence, or is it happening across the entire dataset? To answer this 
question, the user creates the visual concept named “shadow”. She also 
starts specifying positive and negative samples for the concept extractor 
to learn to retrieve similar image patches also containing shadow. The 
training process also utilizes the data augmentation strategy described 
in Section 4.2. The data augmentation process generates 200 images 
for both positive and negative training sets. 

The model analysis result of “shadow” is displayed in Fig. 1(g), 
together with some other concepts. From the confusion matrix, the user 
can verify that indeed the DenseNet-FCN model performs worse on the 
images containing “shadow” images compared to images containing 
other concepts such as standard objects. Meanwhile, the TCAV score 
indicates that the “shadow” pattern influences the prediction of all three 
segmentation labels (in the image segmentation model, we consider 
each pixel as an individual data sample to compute the TCAV score 
[23]). To validate this hypothesis, we augmented the training set with 
artificially-generated shadows ( Fig. 8 ). We randomly draw a boundary 
line across the lost cargo’s bounding box. On a random side of the line, 
we apply a brightness reduction. To make the shadow more realistic, 
we gradually change the darkness around the boundary with Gaussian 
blur. As shown in Table 1, the fine-tuned model after augmentation 
is more accurate. To further verify this strategy’s scalability, we 
also apply the shadow augmentation to another state-of-art model, 
DeepLabV3+ [9] and we see an improvement for IoU accuracy as well. 

For this particular usage scenario, we interviewed and gathered 
feedback from an industrial expert with 15+ years of experience in 
computer vision research and has been heavily involved in the devel- 
opment of autonomous driving software. We introduced the main idea 
of using visual concept learning for model diagnostics and presented a 
walk-through of the system through a remote video call. He immedi- 
ately identified that the system has great potential for collecting similar 



 

 
 

Fig. 7. The precision curves of the “dogs” concept extractor network in 
the lost cargo challenge. The fine annotations available in the dataset 
are used as the groundtruth. The top k selections are made based on 
the concept confidence score. From the initial stage 0 to the final stage 
3, we observe a significant improvement in the precision value especially 
for the top selections, validating the effectiveness of the active learning 
process and the usability of the concept extractor network. 

edge cases (like object under shadows) where the model frequently 
makes mistakes. The visual concepts collected provide a good way to 
cluster the edge cases, reason about them, and develop corresponding 
mitigation strategies (such as adding artificial shadow augmentation). 

8 EXPERIMENTAL     VALIDATION 

In an active learning process, the performance of the model varies with 
the training strategies. For example, even if two models are identical 
in structure, different methods for selecting the labeling candidate can 
generate significantly different model states. Another similar option is 
how much data should be labeled in each stage of the active learning 
process. In order to understand the impact of these variations, we 
carried out a series of experiments to evaluate the effectiveness of our 
active learning model in identifying these concepts under different 
settings. In the experiments, we mainly consider two main factors: 
sampling strategy and latent representation. The first one mainly refers 
to how we select the samples for the user to label at each stage. We 
compared concept extractors trained using different sampling methods 
and explained what sampling strategy we choose for ConceptExtract. 
For the second one, to investigate the influence of different latent pre- 
sentations, besides the current DenseNet-FCN model, we used another 
well-trained model—VGG-16 to extract the latent representations of 
the same data and trained the active learning models for the same 
concepts. We compared the accuracy of these concept extractors and 
demonstrated the concepts these extractors generate. Finally, we also 
make justifications about other choices in ConceptExtract including 
model architecture, cutout methods, and prioritizing methods. 

8.1 Concept Quality vs. Sampling Strategy 
One of the main features of ConceptExtract is that it can include 
human knowledge in the training process of the active learning model. 
The users are able to choose which image patches to add to the training 
set for each stage. Another feature to involve human knowledge is that 
the user can brush on the image patches to mark the pixels containing 
the concept of their interest. To study if these two kinds of human 
knowledge can actually lead to a better concept extractor, we set 
up a baseline model. The baseline model shares the same network 

 
 

Model road(%) lost cargo(%) others(%) 
DenseNet-FCN-B 75.8 50.6 95.4 
DenseNet-FCN-SA 83.6 (0.1) 53.1 (0.5) 96.8 (0.0) 
DeepLabV3+-B 82.8 57.4 96.8 
DeepLabV3+-SA 82.8 (0.5) 58.6 (0.3) 96.8 (0.1) 

Table 1. Lost cargo segmentation performance after training on data with 
shadow augmentation. *-B are baseline models trained without shadow 
augmentation and *-SA are models trained with shadow augmentations. 
Numbers in parentheses are standard deviations. The table shows IoU 
accuracy for each semantic segmentation class. 

Fig. 8. This figure shows sample images from augmenting the training 
set with artificially-generated shadows (Section 7.2). The correlation of 
the shadow concept with misclassifications of the FCN model led to us 
augmenting the training distribution. The fine-tuned FCN model after 
augmentation is more accurate, validating the importance of shadow. 
Even though the shadow we generated is not realistic, fine-tuning still 
provides a substantial performance improvement. 

architecture as the active learning model and it is also trained in 4 
stages. For each stage, 10,4,4,4 positive and negative images are needed 
respectively (For convenience, we use “x-x-x-x” to refer to the number 
of samples added to each training stage). All the processes like the data 
augmentation and the training epochs are the same except that instead 
of using the images chosen and brushed by users, the baseline model 
mimics a standard active learning approach where the most confused 
images will be labeled and added to the next training stage. To model 
a fully-labeled setting, we also create an upper bound model, using all 
image patches as training data and training the model in a single stage. 

An important choice to have to make during the active learning 
process is how many positive and negative samples should be labeled 
by the user at each stage. We seek a sampling strategy that makes 

the concept extraction network as accurate as possible while not 
requiring too many manually labeled samples. We tried a number of 
combinations in labeled images from each stage. 

In Fig. 9, we demonstrate the precision curves of the concept 
extractors for “standard objects” and “bobby cars” under different 
sampling methods. The five models are: (i) baseline model, the model 
trained without human knowledge; (ii) 2-2-2-2, for each stage, two 
positive and negative images are added to the training set; (iii) 6-4-4-4, 
for the initialization, six positive and negative images are added; for 
the other three stages, four positive and four negative images are 
added each time; (iv) 10-4-4-4, which is also the current model used 
in ConceptExtract; (v) upper bound model, trained using all the data in 
one stage. As shown in the figure, all active learning models perform 
better than the baseline model. 

This result illustrates that including human knowledge can improve 
the quality of the concept extractor. As we increase the number of 
training points for each stage, we see obvious precision improvements 
for the concept extractors as well. This suggests that we should include 
more image patches in the training process, especially for the first stage. 
Comparing these two concepts, “standard objects” are relatively easier 
to identify; using only about 3% of the data, we obtain a good con- 
cept extractor (at 80% accuracy for the top 100 selections). Although 
performance is not as good as the upper bound model as we expand 
the selections, the concept extractor still has a stable precision value. 
On the other hand, “bobby cars” is a more difficult concept to extract. 
Even using all the data, the top selection after 50 is lower than 0.5. 
Nevertheless, using only 7% of the positive data, we have already ob- 
tained a concept extractor approaching near upper bound performance, 
especially within the most confident predictions. 

8.2 Concept Quality vs. Latent Representation 
In Section 8.1, we have seen different degrees of difficulty for training 
different concept extractors. We also find that the overall performance 
for the concept extractor network of “standard objects” is better than the 
one of “bobby cars.” We mainly have two possible hypotheses. One as- 
sumption is about the model architecture. Since we are using a shallow 
network for short training time, is the active learning model complex 
enough to identify different concepts? Another assumption is about 



 

 
 
 
 
 
 
 
 
 

Fig. 9. The precision curves (plotted based on top-k selections based 
on the concept confidence score) for two concept extractors: bobby cars 
and standard objects under five sampling strategies. “baseline” is the 
model trained without human knowledge; “2-2-2-2” means for each stage, 
two positive images, and two negative images are added to training set; 
similar to “6-4-4-4”; the current model is the one used in the system, 
using a 10-4-4-4 sampling strategy; the upper bound model trains all the 
data in one stage. The curves show that the quality of the extractors for 
different concepts can vary significantly. This is mainly caused by the 
latent representations we use, which we discuss in Section 8.2. 
the latent representation. Since the extractors are using the deep embed- 
dings extracted from the task model as input instead of the image’s pix- 
els, will the deep embeddings be capable of capturing these concept fea- 
tures in the latent space? To investigate how different deep embeddings 
will affect the quality of the extractors, we carried out an experiment, 
where we obtained a pre-trained VGG-16 model from Pytorch, sent the 
image patches through this model and extracted a new set of deep em- 
beddings. After that, we trained the extractors for the same concepts us- 
ing these new deep embeddings. Comparing to the image segmentation 
model (FCN) we originally used, this VGG-16 model is well-trained 
and the performance for the classification task is fairly good. 

In Fig. 10, we show results for “standard objects”, “bobby cars”, and 
“dogs”, concepts trained with two different deep embeddings. For all 
concepts, extractors using embeddings of VGG-16 perform better than 
those of FCN. For “bobby cars” and “dogs”, the difference is substantial: 
precision values are roughly 0.7 and 0.9 for the top 50 selections, 
compared to those using the FCN model, which is about 0.4 and 0.5. 

This experiment also verifies that even though the architecture of our 
concept extraction network is very simple, it can still extract concepts 
from the image patches. It also indicates that we can relate the extrac- 
tion network’s inability to extract a concept to the quality of the task 
model representations in the latent space. For an image segmentation 
model like FCN, since the model is trained on the specific task to dif- 
ferentiate lost cargo, road and backgrounds, it is not able to distinguish 
different type of cargoes like bobby cars and dogs, or telling humans and 
trees from the background very well. In contrast, a high-quality large 
image classifier like VGG-16 readily separates these features, providing 
evidence that such model understands the concepts being extracted. 

8.3 Other Considerations 
How complex must the concept learning model be? We 

ran an ablation study where we increased and decreased model 
complications a little by adding or removing hidden layers. Additional 
layers generally make convergence harder, and removing layers lowers 
the model accuracy significantly (see supplemental materials). 

Fig. 10. The precision curves for three concept extractors (standard 
objects, bobby cars, dogs) trained with two different deep embeddings: 
VGG-16 and FCN. The VGG-16 model is better trained than the FCN 
model and the concept extractors using deep embeddings from VGG-16 
(dotted lines) outperform the ones from the FCN model (solid lines). 

How should we prioritize the display of active learning 
candidate images? Instead of the common practice of letting users 
focus on images where the active learning model is least confident, 
we instead focus on identifying confident but wrong images from the 
perspective of the base model. This choice maximizes the performance 
of the concept model in its most confident predictions, which matches 
the goal of ConceptExtract better: extracting human understandable 
concepts via exemplar images. 

How should users localize class information in images? 
There are two natural candidate UI techniques: rectangular brushing 
or lassoing [30]. We hypothesized that lassoing a detailed outline of 
the concept instead of a rectangle would increase the accuracy of the 
concept extractor. After running an experiment on FCN and VGG-16, 
we saw no significant difference in model performance for these two 
methods. Thus we choose the simpler UI: brushing. 

9 LIMITATIONS, FUTURE   WORK, AND   CONCLUSION 

Although we have shown that our prototype system can outperform 
standard active learning approaches (the baseline model), there are still 
a number of limitations to be addressed in the future. Most importantly, 
we would like to understand specifically what parts of the interface 
provide the most benefit for the human-in-the-loop approach? For 
example, how important is the exploratory clustering we provide during 
the active learning process? How do different modules affect the choice 
the user makes in selecting image patches? Would a different image 
patch layout help? These questions also will probe our understanding 
of the role of human expertise in the process. 

Secondly, the current system supports a limited number of training 
data and image patches, and the user interface choices we made would 
not be effective under a larger number of classes and image samples. 
Although it is always possible to sample a small number of images 
from the training set to present to a user, a full study of the impact of 
choosing to show more (or fewer) images remains necessary. 

Finally, a full evaluation in real-world application scenarios remains 
needed to complement our preliminary expert evaluation. For future 
machine learning interpretability practice, we would like to study more 
examples about how machine learning experts use these concept-based 
explanations to improve and understand their models. 

In conclusion, we presented a novel approach for extracting 
concepts to help interpret neural networks, and contributed the use of 
a visualization-assisted active learning loop to extract interpretable 
concepts. We integrate the full pipeline into an interactive visualization 
system, ConceptExtract. Through case studies and experimental 
validations, we show our approach can extract concepts that are both 
human understandable and customizable based on the user’s interest. 
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