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Collaborative Visual Analysis on the Web with RCloud
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Fig. 1. An overview of features in RCloud. RCloud supports an environment in which a large number of loosely-related problems in
data and visual analytics are solved by a small number of hackers and scripters. In such a shared environment, discoverability is a
concern. RCloud supports search, annotation, recommendation, and commenting for all notebooks, and provides an overview where
users can browse popular and recent analyses. When problems and data sources change frequently, deployment can become very
costly; RCloud supports transparent and automatic deployment of analyses as web pages and web services, allowing a seamless
transition from data exploration work to production web services.

Abstract— Consider the emerging role of data science teams embedded in larger organizations. Individual analysts work on loosely
related problems, and must share their findings with each other and the organization at large, moving results from exploratory data
analyses (EDA) into automated visualizations, diagnostics and reports deployed for wider consumption. There are two problems
with the current practice. First, there are gaps in this workflow: EDA is performed with one set of tools, and automated reports and
deployments with another. Second, these environments often assume a single-developer perspective, while data scientist teams could
get much benefit from easier sharing of scripts and data feeds, experiments, annotations, and automated recommendations, which are
well beyond what traditional version control systems provide. We contribute and justify the following three requirements for systems
built to support current data science teams and users: technology transfer, coexistence, and discoverability. In addition, we contribute
the design and implementation of RCloud, a system that supports the requirements of collaborative data analysis, visualization and
web deployment. The biggest deployment of RCloud has been in active use for more than two years, and has about fifty active users.
We report on interviews with some of these users, and discuss the design decisions, tradeoffs and limitations, comparing RCloud to
other current proposals.

Index Terms—visual analytics process, provenance, collaboration, visualization, computer-supported cooperative work
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INTRODUCTION

More than a half-century ago, Tukey foresaw much of what is now com-
monplace in data analysis [37]. Powerful, interactive environments for
analysis and programming were the goal, together with an unflinching
(and, at the time, somewhat heretical) insistence in keeping humans as
a central part of the discovery process. His now-famous quip that “the
picture-examining eye is the best finder we have of the wholly unan-
ticipated” has come to define much of visual analytics and exploratory
visualization [38].

In some way, we have moved far beyond what Tukey imagined:
computing and networking capabilities today far exceed what was
barely imaginable then. We argue, on the other hand, that how we

develop our data analysis solutions has not changed as much: the S
language was developed essentially alongside Unix [3] and, although
environments such as RStudio include a variety of modern features,
they still follow the basic metaphor of terminal, text editor, and source
files stored in file systems. We turn our attention to this opportunity
to use computation to support, not only individuals, but entire teams
and their work within larger organizations. In this paper, we contribute
the design of RCloud, together with an interview study conducted over
the course of its development and deployment at AT&T Labs, where
RCloud has been in use for about two years.

Consider the role of a data science team within a business or tech-



nical organization today. Project teams vary in size, from just a few
people to dozens or more, even within one project’s duration. Assign-
ments are often broad, and include tasks such as problem identification,
data wrangling, modeling, analysis, visualization, summarization, pre-
sentation and interpretation of results, and recommending actions to
help clients to realize the benefits of the analysis. Eventually, knowl-
edge or working prototypes created by these teams are transferred to
other organizations to employ them in production. There are many
details to these tasks. For example, data wrangling can involve finding
data, understanding its syntax and semantics, assessing data quality,
performing normalization and data quality remediation, and making
the data available to other tasks that will follow.

Visual analytics depends greatly on communication and collabora-
tion. At almost every step, detailed knowledge about data, code and
tasks is shared by collaborators. Further, data scientists are increasingly
asked to work more closely with business or domain specialists who
may be less technically oriented. Thus, data scientists and developers
are being asked to become very broad, and integrate work across the
spectrum.

Unfortunately, the processes and technologies supporting data anal-
ysis visual analytics are fragmented. Knowledge is shared through
informal conversations, emails, meetings, phone calls, source code, in
wikis, project documents and by other means. Results of experiments
are often shared first by copying static output, usually a screen shot or
image output. By the time decisions are made based on the results of
that screenshot, data and processes may have changed so much that the
decision can be wrong.

This situation can affect how data science teams work; as analysts
and tool builders, we have experienced this first-hand in our environ-
ment, and others report similar findings. Gutierrez collected interviews
with data scientists [13], which include the following:

e (upon being given access to other code and data analysis, in order
to learn about Hadoop) “I could look at other peoples code and
play with their code and data sets as well”

o (discussing the value of sharing prototypes rather than static data)
“Prototyping our products so that internal customers can use them
early on has been crucial for our success. Now we can shoot off a
URL to internal customers and it allows them to provide feedback
way before we’re talking about getting it into production.”

e (on sharing more than just a finished product) “We also share
exploratory analyses and reports so that we can still exchange
knowledge even if the work didn’t make it into a larger project.”

e (on changing analyses and processes) “It is important to have
testing frameworks so you can go back and test all of your data.”

Currently, these concerns are being addressed alongside the visual
analytics environment. Some symptoms of the situation are:

e [t is hard to find data, metadata, and knowledge about them.

e Most coordination is done through meetings, whose content is
not linked to other artifacts and may not even be stored.

e Production deployment requires porting code to a different en-
vironment or even completely rewriting it, thwarting continuous
release.

e Many tools adopt a standalone or single developer perspective,
not suited to collaboration and web deployment.

e Analysts find insufficient support for tracing events or issues from
production back to the EDA process.

In view of the opportunity to improve this situation, we created
a software environment that supports the end-to-end visual analytics
process for individuals and teams. This environment knits together
some familiar tools, and provides new features to find data and code;

create experimental workbooks; run experiments; annotate and deploy
experiments as end-user websites or as reusable, callable services; and
to share, search and recommend these artifacts. The artifacts are stored
in a version control system that provides a common workspace, as
well as needed control and isolation between stable and experimental
versions of code and other resources.

A key point is that, for the most part, the improved capabilities are
available by default, without much explicit involvement on the part
of data scientists and other customers. Visual analytics experiments
are conveniently shared and turned into production websites, without
moving or porting code. All the published artifacts in the system can
be searched immediately. Recommendation is as easy as clicking a star
on a useful workbook.

The high level architecture of the prototype system is shown in
figure 2. We chose R as the foundation for our prototype because it is
already the dominant statistical computing language in our lab. R also
has many useful packages for data analysis and visualization, and the
core system and its packages are open source that can be modified to
support research.

From a more principled or theoretical perspective, certain visual an-
alytics goals or objectives for emerging systems, described in previous
work, closely match ours. We identified the following central themes.

1. Technology transfer. In most organizations, development of anal-
yses and visualizations s done by hackers and scripters (adopting
Kandel et al.’s terminology [21]). Application users gain the ben-
efits of the tools developed by hackers and scripters. Generally,
the connection between these two worlds is made by IT staff,
who port or even rewrite code so it can run as a stable production
service. In an environment where business needs can change
rapidly, this process does not scale. Our objective is to merge the
worlds of EDA and production.

2. Coexistence. In the current data science ecosystem, the isola-
tion of exploratory visualization and data analysis environments
hinders wider adoption of modern techniques from each. The rich-
ness of interactive visualization tools is still somewhat separated
from the power of statistical programming environments. There
is an opportunity to provide a framework so that developments on
each side are more easily adopted by the other, and made available
in production services.

3. Discoverability. A chronic complaint of data analysis teams is
repeated work (“How can I connect to database X?”, “How do you
get clean data from column Y from feed Z?”) This work arises
from lack of communication about previously solved subproblems.
Our goal is encourage and support transparency of work between
team members.

Over the past three years, we prototyped RCloud and deployed it to
a community of data scientists, business analysts and other colleagues.
The platform today has over 300 active accounts; about 20 people use it
regularly, another 30 people use it more than once a week, and another
50 use it more than once a month. Most of the active users are members
of AT&T Labs, but some are data scientists and other collaborators in
other business units.

2 RELATED WORK

Broadly, the entire field of information visualization and visual ana-
lytics revolves around improving how users solve problems involving
data. In this section, we focus specifically on system work relating to
problem-solving environments and multiple users.

Social Data exploration and Analysis ManyEyes [40] was a
landmark system designed for the crowdsourced creation and publi-
cation of data visualizations. Although ManyEyes only supported a
limited number of visual encodings, the system’s success was both a
precursor to more sophisticated solutions and an early indication that
the world-wide web was a suitable platform for data visualization. One
of the main challenges we faced in designing RCloud was providing an
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Fig. 2. A diagram of RCloud’s architecture.

experience for consuming visualizations as seamless as ManyEyes’s,
while sacrificing as little as possible on the generality of the analyses
themselves.

Notebooks as a medium for data analysis dissemination The
concept of a “notebook” as we use it here can be traced all the way
back to Knuth’s literate programming [22]. In literate programming,
a comprehensive description in prose of the behavior of the program
is “weaved” together with the source code, yielding both an executable
program and a human-readable document. A notebook represented as
a collection of short, executable cells, originated with Mathematica,
and in R, literate programming is supported by packages such as knitr
and RMarkdown [42]. Project Jupyter [29] (originally implemented as
part of IPython) offer some notebook features, but lack a transparent
mechanism for sharing and deployment in multiple-user settings. Fur-
ther afield, Electronic Lab Notebooks are applications for organizing
and sharing data from scientific lab experiments[32]. In a sense, we
hope to adapt and extend this concept to the work of visual analytics
teams. Although RStudio offers publication of literate R programs as a
free service on their website, the workflow is somewhat disconnected
from the development of those programs. Once they’re uploaded, it’s
hard for other users to build off of the work published (or even for
the original author to update new versions). In other words, RStudio
handles publication, but not deployment and sharing.

Provenance and versioning As mentioned, one central issue in
exploratory analysis is that problems change quickly over time, often
in the course of developing a solution. As a result, systems should
provide adequate support for tracking changes of the data analysis
scripts. VisTrails was one of the original systems for managing process
provenance , and demonstrated the value of capturing aspects of the
processes that surround data analysis experiments and tools, including
detailed history, collaboration, and deployment [8].

VisMashup [33] defines a schema and semantics for automatically
deriving user interfaces from workflows, while Crowdlabs exposes
these capabilities on a website feature [24] workflow upload and remote
execution. In our view, the impedance mismatch between a dataflow
pipeline specification and the power of a general-purpose language
is too great for the type of general exploratory work in data science
teams. At the expense of ease of use for non-programmers, RCloud
tries to provide a closer match for analysts accustomed to creating and
executing R and Python code, while retaining attractive properties like
transparent provenance tracking and interactive data visualization on
the web.

Web-based tools for sharing code snippets There have been
quite a few tools recently developed for quickly sharing small programs
on the web, including bl.ocks [6], jsfiddle [1], and plot.ly [2]. bl.ocks
and jsfiddle are designed to share Javascript programs, which means
that deployment happens automatically through the web browser. If

Javascript eventually becomes the lingua franca of exploratory data
analysis, we can foresee building a simpler version of RCloud where
all execution happens either on the client side or via web services.
Unfortunately that is not a realistic assumption at present, making these
stand-alone solutions unsuitable for our purpose. Plot.ly is notable in
that it provides API support for publishing from scripts: in other words,
it is possible to generate a plot.ly visualization from inside another
program. Although this is an intriguing idea, it nevertheless creates a
disconnection between the analysis and the resulting visualization. In
RCloud, we wanted to ensure that every visualization is transparently
linked to the source code that generates it.

Needs of data analysts Kandel et al.’s interview study points
out the typical “explore”, “model”, “report” cycle in enterprise data
analysis [21]. There are many discontinuities in this cycle that cost time
and effort to overcome. RCloud seeks to reduce this mismatch. Kandel
et al also point out that larger teams are becoming more common in
data analysis, that supporting collaboration is difficult and important,
and that sharing and versioning of data sources and artifacts is hindered
by current technology. “We found that analysts typically did not share
scripts with each other. Scripts that were shared were disseminated
similarly to intermediate data: either through shared drives or email.
Analysts rarely stored their analytic code in source control.” Their study
highlights the opportunity for better ways of supporting collaboration
and sharing in data analysis teams.

An earlier study by Kandel et al argues that data wrangling (cleaning,
parsing and transformation)is a major part of exploratory analysis and
visualization [20]. We view this as attacking a different semantic
level than ours, but also showing the need for an environment that
enables better sharing of the knowledge, tools and processes to do this.
Anecdotally we find much frustration among practitioners that this
knowledge is difficult to find and often is not recorded or available in a
reusable form even within the same organization.

Heer and Agarwala identify many design considerations for collab-
orative visual analytics [14] that influenced our work. RCloud note-
books, and the integrated version control system for them, described in
Section 3.1, address modularity and granularity, and artifact histories.
Starring, the means for signaling interest in notebooks, described in Sec-
tion 3.2, addresses social-psychological incentives, recommendation,
and voting and ranking. RCloud’s integrated deployment mechanism,
described in Section 3.3, addresses the cost of integration, content
export, presentation and view sharing.

The need for integrating statistics and visualization has been high-
lighted in previous studies and is widely understood by various techni-
cal communities [28] Lucas and Roth were early advocates of combin-
ing data exploration with presentation and publication [23].

There has been noteworthy work on specific techniques to support
collaborative or social code development and data analysis, such as
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Fig. 3. An RCloud notebook is a sequence of cells, each a snippet of source in one of the supported languages (typically R, but Python and others
are also supported) or Markdown. The main creation workflow involves editing notebooks, which are transparently stored as git repositories in
GitHub, providing us with easy access primitives for version tracking. Notebooks can be executed as they're edited (left), or in a standalone viewer
(right), via a slightly different URL. This provides a lightweight, low-friction mechanism for sharing results which we discuss in detail in Section 5.

social bookmarking [25] [15] and crowdsourcing [9]. Similarly, there
are computational methods to support high performance execution in
incremental code development environments [12]. The goal of RCloud
is to define an environment in which many such techniques may be
integrated and made available to a broad community.

One overall goal is to reduce the gap between implementers and
deployers in visual analytics. The fusion of development with produc-
tion operations in software release management (“DevOps” [16] or
“continuous integration” [10]) is a trend in web services and similar
fields. By making it convenient for data scientists to expend just a
little additional effort when creating experiments, we may be able to
eliminate the need for programming teams to recreate their work to
deploy it in production, which has a high cost in time, expense and
accuracy.

We next give a description of the system architecture, and how it
enables capabilities that satisty the requirements as described.

3 THE SYSTEM

The starting point in our design was to take advantage of the current
infrastructure of web software as much as possible. HTTP, despite its
deficiencies, has become the lingua franca of distributed interprocess
communication. This meant that if our system could speak HTTP
natively, then it would be possible to provide a low-friction path from
development of an interactive data analysis script to an automated web
service, essentially a remote function call over the web, which can be
invoked by higher-level tools. An example of this sort of progression is
described in Section 4.

In consequence, the entire high-level infrastructure of RCloud,
shown in Figure 3, uses web standards. The communication between
a web browser and an active R session as a user edits a notebook is
performed by a combination of HTTP and Websockets, while all other
IPC is done through HTTP, from notebook versioning in GitHub to
building and maintaining full-text indices through SOLR. The most
novel aspect of RCloud’s runtime system is its tight integration between
the web client and the backend R process, described in Section 3.4.

3.1 Notebooks

The main unit of computation in RCloud is a notebook. A notebook
holds a sequence of cells, each of which is a snippet of code or hypertext
in Markdown. As mentioned in Section 2, this is not novel; executable
documents like this are a feature of many other systems, including
Mathematica, IPython and Sage.

Notebooks can be executed one cell at a time during an interactive
editing session, providing a similar experience to traditional read-eval-
print loops, or can also be executed all at once, providing an experience
similar to running a shell script.

One of the main contributions of RCloud is the notion that notebooks
are “always deployed”. In other words, the most recent version of a
notebook is immediately available to all other users of the system as
the notebook is being developed. Another way to describe this is that
RCloud lacks a “save” button: any notebook cell that runs is always
associated to a notebook version serialized to disk. Although one of our
interview subjects reported that this sometimes leads to an excessively
fine-grained sequence of versions (see Section 5), we believe that the
alternative of losing automatic sharing is worse (and see Section 5 again
for users reporting their satisfaction over the low-friction shareability).

When we combine immediate deployment with the ability to refer
to the latest version of a notebook by name, we get notebooks that
are always live, but sometimes broken. Because stability is important,
we also allow any previous version of a notebook to be tagged and
referenced. Our notebook scheme is similar in many ways to models
like Jankun-Kelly et al.’s p-set calculus [18] and VisTrails’s version
tree [8], where every change in the state of the system is tracked.

RCloud’s implementation of the versioning mechanism is built on
top of GitHub’s gists [11], which are an HTTP interface for simpli-
fied repositories. The GitHub web-service API provides most of the
semantics we need for the versioning portion of the storage back end:
access to previous versions, comments, starring, and forking. This
provides the additional benefit that every RCloud notebook can also be
manipulated like a git repository. Advanced users then have access to
features like command-line checkout, history editing, and so on.

3.2 Reputation and Interest: starring

One side advantage of centralizing the execution and storage of note-
books is that it becomes feasible to collect usage information that would
otherwise be lost. In the case of social data visualization platforms, we
would like to exploit usage data to help analysts find content of interest,
whether the content is actual source code or accompanying data. The
standard way to achieve this is through user-generated curation and
automatic recommendations.

Automatic recommendations have become famous in the user ex-
perience provided by companies such as Amazon and Netflix (“If you
liked that film, then you should like this one too”). To compute such
recommendations, we need users to curate the collection, by providing
explicit reviews or some other method of indicating interest. We incor-
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porate both explicit and implicit indications of interest in notebooks.
Explicit interest is indicated by “starring,” or clicking on a button that
marks a notebook as interesting. This makes explicit indication of
interest a nearly trivial operation, always available, to encourage its
use. RCloud today uses only simple counts of stars to measure overall
notebook interest, mostly because standard recommender system algo-
rithms require reasonably large training sets to pay off. Nevertheless,
the starring mechanism is sufficient to create personalized recommen-
dations [17].

Implicit signaling of interest is supported by keeping click-through
counts [19] and execution counts. In addition to these standard tech-
niques of collecting feedback from web search, we anticipate applying
static and dynamic code analysis to infer fine-grained information about
relationships, for example, which packages and data sets often appear
together, in the style of Fast et al’s Codex system. [9].

3.3 Deployment of notebooks

Every notebook in RCloud is named by a URL, and notebooks by de-
fault are visible in the entire organization. This is deliberate. As pointed
out by Wattenberg and Kriss [41], broad access to analysis outputs (in
their case, for NameVoyager) increases long-term engagement in part
through cross-references on the web. Although our prototype RCloud
deployment is only visible inside a corporate intranet, we nevertheless
found support for this notion by discovering links to RCloud notebooks
in internal discussion fora and mailing lists. In addition, as we describe
in Section 5, users have almost unanimously adopted ““share-by-URL”
as their default communication mechanism, as opposed to “share-by-
screenshot”, which we consider to be an encouraging validation of the
system.

3.4 Executing R through a web browser, and Javascript
through an R process

As mentioned, the other main goal in RCloud was to provide full access
to the R statistical programming language during the development of a
data analysis notebook. At the same time, when notebooks are deployed
(and potentially accessed by anyone with a web browser), we’d like to
allow the browser to invoke only a very limited subset of R, namely
those notebooks that have been published.

The solution we developed is simple and general, and was directly in-
spired by Miller’s object capabilities [26]. Specifically, the R layer that
communicates with Javascript does not expose unprotected evaluation
of arbitrary functions. Instead, every function that the R layer intends to
expose is associated with a large, cryptographically-safe random num-
ber (a “hash”). This random number is then sent across the wire. This
number is interpreted as an opaque identifier to a function. Because
these identifiers are cryptographically safe, all that the Javascript layer
can do is return them to the R side, in a message requesting that this
function be called on its behalf. In that case, the results of this function
call might include new opaque identifiers, exposing new “capabilities”
to the web browser.

The same idea of exposing functionality via hashes can be used to
give the server-side of RCloud access to Javascript functions. This
allows R libraries to respond to user input in the browser, giving them
access to features ranging from password prompts, to the currently
selected set of points in an interactive linked brushing visualization.

As aresult, the features required to provide safe access to R from the
client, and Javascript access from the R side, also enable full two-way
communication between the languages. This provides considerable
flexibility, so that for example, a chart built with dc.js or leaflet.js
can call back to analysis functions in R without having to define an
additional protocol between the processes. From the Javascript side, an
RPC call into the R process is just another HTTP request. From the R
process, a call into Javascript looks like just another function call.

4 CASE STUDY: VISUAL EXPLORATION OF TOPIC MODELING
IN RCLouD

As an example, we present a simple real-world application deployed
under RCloud.

The application is an implementation of LDAVis, a recent method
for visualizing large text corpora. It was designed to help non-experts
to explore collections of short text documents using topic modeling
and visualization. Topic modeling [5] is a standard technique for
text summarization which, although powerful, requires some manual
intervention and interpretation [35].

LDAVis was developed by two technical staff members at AT&T
Labs, and originally was written in RStudio’s Shiny [31], a framework
for developing R applications for the web. While Shiny provides
outstanding ease of development, it turns out that discoverability and
deployment are equally important aspects in the lifecycle of an internal
application (see Section 5). In these aspects, RCloud provides a simple
solution: all developed notebooks are automatically deployed.

LDAVis combines text analysis, dimensionality reduction and in-
teractive visualization. Text analysis is performed by combining a
standard R library to fit LDA models using Gibbs sampling [] with
custom R code written by the developers. The analysis module is,
ultimately, a single R function exposed to the web application via the
Javascript-R RPC mechanism described in Section 3; thus analysis is
performed remotely on an RCloud server.

Each text topic is a probability distribution over the all the words
of the document. To expose patterns in the relationships between
topics, LDAVis employs a combination of interactive visualization
and dimensionality reduction, allowing users to adjust measures for
topic distances and the choice of dimensionality reduction technique.
The dimensionality reduction algorithms and distance measures are
implemented in R, which means they can be executed on the RCloud
servers as well.

The result of the dimensionality reduction process is a two-
dimensional plot of the topic space, an example of which is shown
in Figure 4. The interactive view is implemented in SVG and Javascript
through D3 [7]. One of the most popular web-based visualization li-
braries for R is ggvis [30], so it is natural to ask if ggvis could have been
used instead of custom Javascript. In this case, the interactive features
of ggvis (and, by extension, Shiny) are a subset of those in Vega [36].
Custom interactions in LDAVis (such as hovering over a topic, topic
cluster, or word) do not appear to be available yet in Vega [36], al-
though the required components for reactive interaction were recently
described by Satyanarayan et al. [34]. Although custom Javascript was
required, the flexibility is welcomed by many web developers.

The LDAVis application is simple, but highlights some unique fea-
tures of RCloud. While RCloud notebooks allow deployment of R
analyses over the web with no additional effort, RCloud applications
are more powerful, and are developed with a combination of Javascript
and HTML for the front end. This requires additional knowledge over
Shiny, but we argue that the RCloud model makes the analysis side
simpler (since analysts simply write R in the style they are used to),
and the front end visualization side is simpler for the web developers
(since they simply write the Javascript code in the style they are used
to). In addition, RCloud applications inherit the automatic deployment
and discoverability features of all RCloud notebooks.

5 INTERVIEW STUDY

To evaluate the effectiveness of RCloud, we interviewed 13 current or
recent users of RCloud. 9 are data analysts, and 4 build tools for data
analysts and business needs.

The subjects differed in their evaluation of its benefits and disadvan-
tages, as described below.

5.1 Sharing of results

Sharing of notebooks is the core feature of RCloud, and a popular one.
All the subjects praised this feature.

By default, all RCloud notebooks are publicly visible, and notebooks
can be found by navigating the notebook tree, or by searching. However,
users most often mentioned sharing by sending links through email.
Lilo says, “If my supervisor wants to see what I’ve done or QA it, I can
just send her a link.”

Besides providing a way to present work, notebook sharing can
provide a starting point for coding. Lilo says, “The best part is how
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Fig. 4. An example application developed and deployed in RCloud.

easily you can share code. You can find a working example, rather
than wearing out Google and finding questionable examples that may
or may not work.” Wendy notes, “[If] some person has done something
similar, then you’re able to just edit that, and that’s saved a lot of work
time for me.”

Evelyn develops packages for analysts, and uses RCloud “more for
sharing code with other people, and for doing tutorials for iotools or
hmr”, his packages. “I want people to see how the package works, so
I clearly want them to see the code... I write it just like I would write
GitHub Markdown, where you have little code snippets and text, but
RCloud lets me actually run the snippets [and display the results].” He
also uses RCloud for describing and debugging problems with data
sources.

Some users, who tried RCloud and were not able to continue for
organizational reasons, miss certain capabilities. Leith “[likes] the
concept of being able to create notebooks and share them... A wiki is
not the best way for communicating results - it’s kind of like writing a
blog post with very limited functionality. I have to save every picture
and post it as an image.” She said, “I can’t share all of the code
because it would just get crowded and wouldn’t look right on a wiki.”
Iris explains, “If I could make a folder on RCloud and have Python
notebooks and also Pig notebooks there, and execute them from RCloud,
that would be much better than my current [environment], because that
would free me from manual documentation and version control and
also telling people where my code was. It would be just, hey, go look
on RCloud, here’s the stuff.”

5.2 Forking

The ability to start work where someone else let off, by forking, proved
to be a popular feature. In fact, almost twice as many (131) users have
forked someone else’s notebook as have starred one (75). Lilo says,
“It’s one of the handiest functions, because instead of having to find
it, copy, paste it, you just hit Fork, rename it, and it’s done. It’s pretty
amazing.”

Although we intended forking to be available to improve others’
code, we initially didn’t anticipate support forking one’s own notebooks,
which proved very useful. Kenyon says, “I fork my own notebooks
because I'm going off and doing some other analogous project, so I've
got interesting content that I’ve already done in a previous analysis,
that I want to start from and then tweak to match a new set of data.”

Forking also provides a way for others to troubleshoot when some-
thing goes wrong. When Hugh works with the users of his notebooks,
“I’ll teach people to intercept the result in the middle, to insert print
statements here and there and check values.”
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A common but somewhat problematic use of forking is to change
parameters. Wendy says, “I’ve been forking other people’s notebooks
[because] I want to run them on a different part of data, or I want to
change some parts, [ don’t want to see this column, I want a different
column, things like that.” Evelyn complains that a notebook might say
““This is a report of the volume of all of our feeds for this month’, and
someone would want to look at it for the next month or the previous
month, so they’d fork it to change the month.”

Parameters can be added to a notebook URL, but adding user inter-
face elements to do the same thing requires expertise. Tool builders see
aneed for facilities to make it easier. Allison calls it “web-enabling” the
notebook: “[users] can always fork the notebooks and make changes,
but I feel that if the owner of the notebook web-enables it, it’s easier
to run. Instead of forking it, if they can set options, it’s probably more
efficient, and they can [still] fork it if they want to.”

5.3 Automatic source control

Automatic source control is also a popular feature. Lilo says, “Instead of
looking back and saying I've got a billion files here in this subdirectory
and I hope I've got them backed up, if they’re on RCloud I know they
are.”

Iris points out that the automatic versioning works well for dealing

with the minutiae of web development:

I like the fact that it has a built-in editor, so if you need to
fix a typo in a link, or an extra line break or other nonsense,
you can just switch to the edit view, pull up your asset, type
something, it’s automatically saved, committed, everything.
You don’t have to go back to your source code, change it,
commiit it to the repo, pull the repo to your distribution
version.

On the other hand, saving every change leads to many fine-grained
versions. Kenyon says that for this reason, the history feature is not
that helpful: “I don’t need something that keeps track of every mistake
I’ve made or every direction I've tried.”

5.4 Discovering others’ work

Many users find the search function valuable. Wendy says, “The fact
that we have all the notebooks there, searchable, saves me from repli-
cating what other people have done.”

But other users prefer to browse just the notebooks of experts they
know. Kenyon says, “Usually I know somebody’s notebooks that I want
to search through, because I know that the kind of thing I'm looking
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for is something more obscure than I'm likely to find in some random
person’s.”
More selective ways to search will be needed as the number of

notebooks grows further. We explore some ideas in Section 6.

5.5 Integrated analysis

Integrating an analysis language into a web development environment
is something tool developers really appreciate. The structure of Hugh’s
visualization notebook means

the other guys who want to do analytics on the data can first
pull the data, do the analytics on it, and then feed the viewer
the data. Anyone from the stats group can insert something
in between. Once you get the data into RCloud, then you
have a dataframe to work with, and then they can produce
another dataframe.

Integrating R also helps Allison’s application: ‘“Having an open
session where I can run R commands or functions without having to
invoke an API or send a request and then wait for the response is
extremely helpful in writing the application.”

5.6 Exploring elsewhere

Although most of the analysts use and appreciate the sharing features,
RCloud is less popular as a tool for exploratory data analysis. Every
analyst with prior R experience still prefers to do analysis in another
tool, and paste code into RCloud for sharing.

This is mainly out of familiarity. Evelyn asks, “Why would I want to
use RCloud over my current setup? If it’s just me, I like my text editor
and terminal. There’s nothing that I want that those two don’t give me.”

The web interface of RCloud isn’t satisfactory to Kenyon: “It’s nice
to have it saved, but there’s this trade-off between it making it easier for
me to present something or to save something, and my ease of typing
and correcting and things in a plain editor window.”

Coby also works with text files and command line, rearranging a file
so the good code is at the top of the file. When he’s done, all the right
code is at the top. RCloud does not readily support this workflow, but
Coby often shares work by pasting it into an RCloud notebook when
he’s done.

Working in a shared environment also entails compromises about
what you can install. Joy says installing alternative or nonstandard
packages is intrinsic to exploratory data analysis.

5.7 Cells versus the command line

RCloud’s notebook interface combines editable Markdown with a com-
mand line interface.
The interface takes some learning. Lilo says,

I saw the cells and it just threw me for a total loop. I mean,
it’s a good idea because [...] I can run it all at once if I want
or I can break these into sections for either debugging or
staging purposes. I really like it now, but when I first saw it,
[it was] very confusing.

Simply the difference between a cell and the command prompt can
confuse some people. Kenyon explains:

If I was typing into one of the cells near that top, I had to
think “I’m editing this cell and then I have to execute it,”
and if I was editing one at the bottom, I could type it but
then it would automatically execute [by pressing enter].

Much of the time, commands typed at the R command line serve
only a transitory purpose, so having RCloud persist commands in cells
can be annoying. Coby notes, “It saves everything I do like everything
is gold, but most of it is junk not meant to be saved.” Kenyon says, “I
just want to type in a couple of quick commands and get some results
that are going to tell me what to do next, and they’re not necessarily
archival in any sense.”

Material that is not appropriate to save includes “expressions that
allow me to check that I'm the right track” (Kenyon), “checking out

what your data is, or you make a plot of the data. Things that should not
really become part of a notebook, but things that help you understand
your data better” (Wendy).

Users felt that cells do not capture the right level of granularity: they
either hold too much code or too little. Kenyon says that RCloud’s
cell structure “tempts me to type a big long thing and then run the
whole thing, as opposed to typing a few little pieces and then put them
together” as he would on the command line. When Evelyn uses the
R command line, he “copies and pastes 5-10 lines of code, so when
something breaks, I get an error message on that one line, and I can
up-arrow and change it and fix it, whereas in RCloud I have to run a
whole cell, so the only way to get that functionality is if every line’s in
one cell.” Another complaint related to the human interface was that
cells can take up substantial vertical space, requiring scrolling.

Some users would like a way to keep results separate from code.
Gerrard thinks RStudio’s layout is more helpful because charts are
shown in another pane that stays in place while doing analysis. Wendy
says “Cells are really useful, [but] you want to see your output in a
different window or on a separate part of the window”.

The cell structure also can be problematic if some cells take a long
time to execute. In Coby’s work, there is often a “long tail”. The first
cell may take just seconds to run, the next cell minutes, and the last cell
5 hours. In this situation, the Run Whole Notebook button is dangerous.
Coby reports that when converting his work to notebooks, he ends up
with a lot of comments saying “This cell takes a long time to run.”

To avert this pitfall, some users write code within cells to explicitly
cache results. Coby ends up “littering the notebook with little switches
that comment out the slow parts” and either load or save the object to
disk. One of the authors of this paper manually writes cells that check
if a result file exists, and perform a calculation only if it’s needed.

5.8 A sea of notebooks

RCloud is becoming a victim of its own success, as it is becoming
difficult to navigate all the notebooks. There are over 5200 notebooks
in the research instance, of which more than 500 have been starred, and
more than 350 have been forked.

For this reason, Kenyon doesn’t find the notebook tree satisfactory:

I don’t necessarily need to see everybody’s notebook that
uses RCloud. Every time I do something new, I get a new
notebook, so now I have 50 or 60 notebooks. That’s enough
to think about just on my own, but if everybody has 50 or 60
sitting on my display, it’s more than I want to know about.

Although RCloud promises an environment where notebooks should
keep working, not all our users have learned the habits that make this
a reality. As Joy puts it, there is still a big problem with “bitrot” —
notebooks often stop working because the user changed the structure
of their data, or changed a filename or a database. She says we need
“organizational protocols” to catch up with the technology. Even if one
forks someone else’s notebook and corrects it, the original notebook
still exists with the error.

Evelyn, who writes packages and example notebooks for them,
mentioned the accumulation of dead notebooks. When Evelyn and
Hugh work together on a notebook:

There’s no way for both of us to have ownership of a note-
book, so the only way is to fork it back and forth, and so we
have dozens of old copies. We end up deleting all the old
ones, but people still have links to them, because they don’t
actually disappear.

The problem of dead notebooks is compounded by changing pack-
ages and example notebooks at the same time. Evelyn will “go back
and change it and update the page, but then what happens is people
have in the meantime forked it. I’ll have to change a package as well,
so their old fork stops working, and they complain.”

Evelyn tried to keep his notebook tree well organized, but this didn’t
help, because some people kept old links in their email, or forked
notebooks which had become obsolete. By design, notebooks that are



deleted in the user interface are not purged from the repository. Now
he says he is scared to share notebooks: “Do I want to support this
forever?”

6 DISCUSSION, LESSONS AND LIMITATIONS
6.1 Reflection on Design Considerations

Experience with deploying RCloud in a community of data analysts
(“hackers”) gave us some insight into whether the proposed require-
ments are appropriate, and how well they were met.

Our experience underscored the relevance of Heer and Agrawala’s
design considerations, and indicated areas for further exploration. We
adopt their taxonomy in the following discussion.

Shared artifacts and artifact histories are a central feature of
RCloud, through its shared workbooks of experiments and analyses.
We observed that hackers readily share work through RCloud. They
use it to demonstrate techniques, share results with peers and managers,
and to transfer algorithms to other groups. Artifact histories can be
accessed through the notebook tree or through GitHub’s web interface.

Modularity and granularity The ability to partition work into
independent units (modularity) is a key to working productively in
teams. It is good if the units can be kept small, so team members can
realize benefits at least proportional to the work on the units (granu-
larity). RCloud’s notebook and versioning capabilities allow work to
be divided into units as fine as the underlying language allows, and
versioning encourages making incremental changes at low cost and
without disrupting the work of others.

View sharing, bookmarking Most resources in RCloud are
named and accessed as URLs. This proved to be an effective mecha-
nism for sharing and for integrating analyses with external processes
and systems. It is particularly advantageous for work to be shared
as URLs that provide access to code and experiments, instead of by
pasting static screenshots into documents and presentations.

Discussion Annotation and commenting was another central goal.
Commenting is supported through GitHub, but our hackers found it
awkward and did not exercise it as much as we expected. An interesting
question is, to what extent should application users be able to make an-
notations in published notebooks without coding and being exposed to
the hackers’s view? The design of more elaborate, integrated annotation
remains as future work.

Content export is not a capability we aimed at supporting, and R
already has many packages for this. Recently, due to popular demand,
we added user interface support for exporting plot images. We assume
that RCloud notebooks should play well in the ecosystem of other tools,
but sometimes it is difficult to know whether adding a compatibility
feature will offload complexity or bring more in.

Social-psychological incentives and voting and ranking are
supported through starring and forking. These mechanisms are em-
ployed often on the platform. An obvious next step would be to en-
hance recommendations using relationships discovered by static and
dynamic code analysis. This may be considered both within and across
collections of scripts (the latter being similar to VisTrails’ enhanced
recommendations by clustering multiple workflows). It seems valuable
to know which packages are frequently used together, or appear in
proximity to a certain record types or data feeds. In general, trivial or
passive mechanisms to collect data for recommendations are essential.

Group management, size and diversity This area needs bet-
ter support in RCloud, but is clearly important to working in teams.
We rely on external administrative processes and social conventions
to manage accounts and groups. RCloud could benefit greatly from
integrating social media to track identities and groups and to maintain
communication channels, instead of having its own isolated solution.

Curation Even without formal group management, users may cu-
rate groups of related notebooks using notebook tree folders. We found
this particularly effective in collecting and distributing training materi-
als.

6.2 Limitations

Because we developed our ideas while simultaneously creating a proto-
type, we did not foresee some of the requirements that emerged after
people started working with RCloud.

Versioning Some important aspects of the environment are more
difficult to manage in RCloud than in conventional systems. RCloud
does not explicitly separate the development and deployment environ-
ments. More than that, every version of every prototype is shared by
default. Although this encourages collaboration on work in progress
it also quickly exposes errors such as misconfiguration, mismatches
between versions of packages, and programming errors that can un-
intentionally affect production websites. Such errors are difficult to
completely avoid, but the power of convenient sharing is often worth
it (as proven true with distributed systems in general). Still, effective
control over versioning when sharing problem needs more attention if
RCloud would be scaled up to a wider number of users lacking informal
channels to coordinate work.

Versioning needs to be managed in several places: in scripts; in
the R environment such as the installed libraries and packages; and in
the external environment such as the operating system and protocols
spoken by remote services. At one end of the scale, we have full control
over the versioning of scripts via git, along with conventions to name
stable or working versions of scripts, and versions known to work
together. The R environment itself is under the control of its package
manager that has rules to ensure reasonable consistency. It is at least
possible for RCloud to access information about package versions and
configurations, but support for checking compatibility and maintaining
multiple versions in the same environment is not strong. At the other
end of the scale, there is not much reason to expect version control for
the external environment. Most programmers rely on clean living and a
careful approach to system upgrades.

On top of this, RCloud allows or even encourages hackers to fork
experiments to try new ideas quickly. So far we have not done much
more to address the problem of having a lot of bits and pieces of code
and data lying around, though we have provided a framework in which
it should be easier to find them and to apply algorithms and metadata
to organize them.

Caching An important consideration is how and where to intro-
duce caching in RCloud’s distributed computation model. Caching
can dramatically improve performance in a way that is otherwise trans-
parent to application program semantics [8, 12]. Though caching is
usually implicit, in some environments, such as VisTrails, programmers
may also have some explicit control over cache management. This
may be desirable to ensure the repeatability of computations that rely
on volatile or unreliable data sources. For example, the stock ticker
use case is one for which the data might temporarily become unavail-
able, so caching could improve reliability and consistency of results.
Alternatively, in situations involving relatively expensive computation
(for example, analysis of large text corpora, clustering multivariate
time series or deep learning algorithms) caching may be essential to
adequate performance. Currently we would program this in RCloud by
explicitly saving an analysis in a persistent database, but it seems better
to implement this capability in a general purpose associative cache, in-
stead of application-specific libraries. We envision cache management
being implemented in a new middle layer to be added in the future.

Security It is essential to provide security in an environment for
collaboration and data publishing. To provide some protection for
RCloud workbooks in an organization’s intranet, RCloud uses an object
capability model [26] recently added to the Rserve protocol [39] that
prevents unauthenticated clients from making unauthorized calls to the
RCloud runtime environment.

Our back-end environment assumes a high degree of trust between
users. Access control for information security is delegated to the host
operating system and web server. In practice, most operating systems
and web servers rely either on coarse permission models, which tend
to be ineffective, or on detailed access control lists, which tend to be
cumbersome. Information security in RCloud should be improved.
More sophisticated approaches, such as information flow analysis, and
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Versioning/Forking  Collaboration  Deployment Multilanguage Integrated Reports Integrated Analysis

RCloud X X X X X X

RStudio X X
JSFiddle X X

bl.ocks X X X

shiny X X X

Jupyter X X X

Tableau X X X

Table 1. Comparison of system features.

query languages that ensure differential privacy, are active research
topics, and many problems remain [27]. We are hopeful that having
a richer environment for collaboration and information sharing will
encourage new approaches to information security in visual analytics.

Exploration is hard R is a popular language for exploratory data
analysis, and we built RCloud as a way for data scientists to seamlessly
transition from EDA to sharing and presentation. But the combined
notebook and command line interface we designed interferes with the
use of R for exploration.

In existing R tools, the command prompt is used to try things out. It
is very fast and there is no commitment: nothing gets saved and there
is nothing to later clean up. In contrast, in RCloud’s notebook interface,
the extra cells need to get deleted later, and there seems to be a mental
burden that bad stuff is getting saved.

One thing to try here is making deletion easier, for example with a
shortcut key to remove the last cell, or a way to keep a few cells and
cull the rest. A far more ambitious solution, suggested by one of our
interviewees, is to implement auditing of data analyses as it existed in
S [4], so that a result could be selected and code which did not lead to
it could be discarded automatically.

We got here from an insistence on reproducibility: it is a core prin-
ciple of RCloud that no command should be run without being saved,
even if it gets deleted later. This is why we did not implement a simple
command line as many users request. We could imagine making an
exception for commands that have no side-effects, but in the general
case this is no easier than auditing because R is not a purely functional
language.

The interface is also perceived to be slower, both for computer and
for human. First, there is higher latency when commands run, because
RCloud saves a cell to a repository before executing it. It may be
possible to safely write to the repository behind execution of the same
code. Second, and perhaps more detrimental, the interface requires
switching between the keyboard and mouse, which can be cumbersome.
Shortcut keys can defined as a workaround, but it would be better to
reduce the need for them.

Other complaints mostly focus on layout, and can probably be ad-
dressed by offering better customization, and designs such as tabbed
views.

Discovery is hard While we provided tools for searching and cu-
rating notebooks, the search function does not help for finding method-
ology (and does not protect searchers from erroneous notebooks), and
the notebook tree starts to get unwieldy with hundreds of users and
many hundreds of notebooks. In addition, our choice to retain note-
books even when they have been deleted exacerbates the situation, since
obsolete and broken notebooks stay around forever.

One thing to try is tagging and filtering on tags, so that users can
mark their own notebooks or those of others to make them easier to
find. However, this relies on users making a conscious effort, which is
not always reliable. It seems better if possible to lean more on passive
metrics, such as how often a notebook has been run.

The system also needs to help users to curate notebooks. If a note-
book has been deleted or superseded by one of its forks, a user who
opens it should be warned. And operations on multiple notebooks and
folders of notebooks should be supported to make curation easier.

Collaboration is hard While forking provides a simple way to
continue someone else’s work, working in teams is a lot more compli-

cated. The forking feature is popular but it poses a problem, too, as
dozens of versions of a notebook proliferate.

One solution we are considering is to allow overwriting the cur-
rent state of a notebook with the current state of another fork of the
notebook.

A more general solutions would be a serious engineering endeavor.
Even GitHub’s admirable web interface does not support merging where
there are conflicts. Unrestricted sharing of notebooks would probably
require moving toward git’s notion of decentralized code repositories,
because GitHub gists do not support shared ownership.

7 CONCLUSIONS AND FUTURE WORK

We presented a case for an environment that supports the visual analyt-
ics process for work by teams. The process includes data acquisition,
exploratory data analysis, code development and deployment.

Building on previous work to define requirements for visual analyt-
ics, we designed an environment for exploration, sharing, presenting
and publishing. We implemented it in the RCloud prototype.

We deployed RCloud in a community of working data scientists.
Experience with the prototype provides evidence that data science teams
and the organizations in which they work benefit from capabilities to
support collaboration and to integrate the entire visual analytics process.
We found that features for sharing and publishing were eagerly adopted.
Features for single-user data exploration, that compete with existing
mature tools, were not accepted as readily. Some experienced users
fashioned their own workflow so they could keep using familiar EDA
tools.

This study has provided a step toward practical “DevOps for data
science” and reproducible, publishable experiments. Possible next
steps are to incorporate richer recommendation techniques, to provide
fine-grained information security, and to improve the usability of the
human interface.

RCloud code is available at github.com/att/rcloud/ under
an MIT open source license.
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