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Abstract

In the classical Steiner tree problem, one is given an undirected, connected graph G = (V,E)
with non-negative edge costs and a set T ⊆ V , the terminals. The objective is to find a minimum-
cost edge set E′ ⊆ E that spans the terminals. The problem is APX-hard [Bern & Plassman,
IPL 1989]; the best known approximation algorithm has a ratio of ρ = ln(4) + ε < 1.39 [Byrka
et al., J. ACM 2013]. In this paper, we study a natural generalization, the multi-level Steiner
tree (MLST) problem: given a nested sequence of terminals T1 ⊂ · · · ⊂ Tk ⊆ V , compute nested
edge sets E1 ⊆ · · · ⊆ Ek ⊆ E that span the corresponding terminal sets with minimum total
cost. (Note that, for ` = 1, . . . , k, edges in E` contribute (k − `+ 1)-fold to this cost).

The MLST problem and variants thereof have been studied under names such as Quality-of-
Service Multicast tree, Grade-of-Service Steiner tree, Multi-Tier tree, etc. Several approximation
results are known. We first present two natural heuristics with approximation factorO(k). Based
on these, we introduce a composite algorithm that requires 2k Steiner tree computations. We
determine its approximation ratio by solving a linear program. We then present a method that
guarantees the same approximation ratio and needs at most 2k Steiner tree computations. We
compare five algorithms experimentally on several classes of graphs using Erdős–Rényi, random
geometric, Watts–Strogatz, and Barabási–Albert network generation models for varying |V |, k,
and terminal selection methods. We also implemented an integer linear program for MLST to
provide ground truth. Our combined algorithm outperforms the others both in theory and in
practice when the number of levels is up to k ≤ 22.

1 Introduction

Let G = (V,E) be an undirected, connected graph with non-negative edge costs c : E → R+, and
let T ⊆ V be a set of vertices called terminals. A Steiner tree is a subgraph of G that spans T . The
(Network or Graph) Steiner tree problem (STP) is to find a minimum-cost Steiner tree E′ ⊆ E,
where the cost of E′ is c(E′) =

∑
e∈E′ c(e). STP is one of Karp’s initial NP-hard problems [12].

There is a survey on Steiner tree problems [22], an online compendium [11], and a textbook [19].

∗This material is based on work supported by the National Science Foundation through the TRIPODS project
under Grant No. CCF-1423411.
†This paper has been accepted in 17th International Symposium on Experimental Algorithms (SEA 2018)
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Figure 1: An illustration of a 3-level MLST for the graph at the right. Solid and open circles
represent terminal and non-terminal nodes, respectively. Note that the level 1 tree (left) is contained
in the level 2 tree (mid), which is in turn contained in the level 3 tree (right).

Due to its practical importance in many domains, there is a long history of exact and approx-
imation algorithms for the problem. Let us quickly recall the classical 2-approximation algorithm
for STP [10]. Consider the metric closure of G, that is, the complete edge-weighted graph G∗ with
vertex set T in which, for every edge uv, the cost of uv equals the length of a shortest u–v path
in G. A minimum spanning tree of G∗ corresponds to a 2-approximate Steiner tree in G.

Currently, the last in a long list of improvements is the LP-based approximation algorithm
of Byrka et al. [5], which has a ratio of ln(4) + ε < 1.39. Their algorithm uses a new iterative
randomized rounding technique. Note that STP is APX-hard [4]; more concretely, it is NP-hard to
approximate the problem within a factor of 96/95 [7]. This is in contrast to the geometric variant
of the problem, where terminals correspond to points in the Euclidean or rectilinear plane. Both
variants admit polynomial-time approximation schemes (PTAS) [1, 15], while this is not true for
the general metric case [4].

In this paper, we consider a natural generalization of STP where the terminals appear on
“levels” and must be connected by edges of appropriate levels. We propose new approximation
algorithms and compare them to existing ones both theoretically and experimentally.

Definition 1.1 (Multi-Level Steiner Tree (MLST) Problem). Given a connected, undirected graph
G = (V,E) with edge weights c : E → R+ and k nested terminal sets T1 ⊂ · · · ⊂ Tk ⊆ V , a multi-
level Steiner tree consists of k nested edge sets E1 ⊆ · · · ⊆ Ek ⊆ E such that E1 spans T1, . . . , Ek
spans Tk. The cost of an MLST is defined by c(E1) + c(E2) + · · ·+ c(Ek). The MLST problem is
to find an MLST EOPT,1 ⊆ · · · ⊆ EOPT,k ⊆ E with minimum cost.

Since the edge sets are nested, we can also express the cost of an MLST as follows:

kc(E1) + (k − 1)c(E2\E1) + · · ·+ c(Ek\Ek−1).

This emphasizes that the total cost c(e) of an edge that appears at level ` is (k − `+ 1)c(e).
We denote the cost of an optimal MLST by OPT. We can write

OPT = kOPT1 + (k − 1)OPT2 + · · ·+ OPTk

where OPT1 = c(EOPT,1) and OPT` = c(EOPT,`\EOPT,`−1) for 2 ≤ ` ≤ k. Thus OPT` represents
the cost of edges on level ` but not on level ` − 1 in the minimum cost MLST. Figure 1 shows an
example of an MLST for k = 3.

Applications. This problem has obvious applications in designing multi-level infrastructures of
low cost that connect users who need connections among themselves of high-enough quality for
their purpose. Apart from this application in network design, multi-scale representations of graphs
are useful in applications such as geography or network visualization, where users want to examine
complex (street, river, or abstract) networks at different levels of detail. Here, the cost models the
“stability” of the visualization.

Previous Work. Variants of the MLST problem have been studied previously under various names,
such as Multi-Level Network Design (MLND) [2], Multi-Tier Tree (MTT) [14], Quality-of-Service
(QoS) Multicast Tree [6], and Priority-Steiner Tree [8].
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In MLND, the vertices of the given graph are partitioned into k levels, and the task is to
construct a k-level network. For 1 ≤ ` ≤ k, let c`(e) be the cost of edge e if it is in level `
(“primary” and “secondary” costs for 2 levels). The vertices on each level must be connected
by edges of the corresponding level or higher, and edges of higher level are more costly, that is,
0 ≤ ck(e) ≤ · · · ≤ c1(e) for any edge e. The cost of an edge partition is the sum of all edge
costs, and the task is to find a partition of minimum cost. Note that the definitions of MLND and
MLST treat the bottom level differently. While MLND requires that all vertices are connected
eventually, this is not the case for MLST. In this respect, MLST is more general than MLND,
which makes it harder to approximate. On the other hand, MLND is more flexible in terms of
edge costs. Whereas the Steiner tree problem is a special case of the MLST problem for k = 1,
the same problem is a special case of MLND for k = 2, by setting c2(e) = 0. Let ρ be the ratio
of the best approximation algorithm for (single-level) STP, that is, currently ρ = ln(4) + ε < 1.39.
Balakrishnan et al. [2] gave a 4/3ρ-approximation algorithm for 2-level MLND with proportional
edge costs, that is, c`(e) = ck(e)(k − `+ 1).

For MTT, which is equivalent to MLND, Mirchandani [14] presented a recursive algorithm
that involves 2k Steiner tree computations. For k = 3, the algorithm achieves an approximation
ratio of 1.522ρ independently of the edge costs c1, . . . , ck : E → R+. For proportional edge costs,
Mirchandani’s analysis yields even an approximation ratio of 1.5ρ for k = 3. Recall, however, that
this assumes Tk = V , and setting the edge costs on the bottom level to zero means that edge costs
are not proportional.

In the QoS Multicast Tree problem [6] one is given a graph, a source vertex s, and a level
between 1 and k for each terminal (1 meaning important). The task is to find a minimum-cost
Steiner tree that connects all terminals to s. The level of an edge e in this tree is the minimum
over the levels of the terminals that are connected to s via e. The cost of the edges and of the tree
are as above. As a special case, Charikar et al. [6] introduced what they call the rate model, where
edge costs are proportional. They show that the rate model remains NP-hard if all vertices (except
the source) are terminals (at some level). Note that if we choose as source any vertex at the top
level T1, then the MLST problem can be formulated as an instance of the rate model by Charikar
et al.

First, Charikar et al. gave a simple 4ρ-approximation algorithm for the rate model. Given an
instance ϕ, their algorithm constructs an instance ϕ′ where the levels of all vertices are rounded up
to the nearest power of 2. Then the algorithm simply computes a Steiner tree at each level of ϕ′

and prunes the union of these Steiner trees into a single tree. Next, Charikar et al. improved the
ratio to eρ, where e is the base of the natural logarithm. The eρ-approximation is similar to the
4ρ-approximation, but uses randomized doubling. It can be derandomized.

Instead of taking the union of the Steiner trees on each rounded level, Karpinski et al. [13]
contract them into the source in each step. This yields a 2.454ρ-approximation. Karpinski et al.
also gave a (1.265+ε)ρ-approximation for the 2-level case. (Since the results of Karpinski et al. are
not given with respect to ρ, but depend on several Steiner tree approximation algorithms – among
them the best approximation algorithm with ratio 1.549 [20] available at the time – we obtained the
numbers given here by dividing their results by 1.549 and stating the factor ρ. Strictly speaking,
their algorithm could perform worse when plugging in the algorithm of Byrka et al. [5], but we did
not redo their analysis.)

For the more general Priority-Steiner Tree problem, where edge costs are not necessarily pro-
portional, Charikar et al. [6] gave a min{2 ln |T |, kρ}-approximation algorithm. Chuzhoy et al. [8]
showed that Priority-Steiner Tree does not admit an O(log log n)-approximation algorithm unless
NP⊆DTIME(nO(log log logn)).

For Euclidean MLST, Xue at al. [24] gave a recursive algorithm that uses any algorithm for
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Euclidean Steiner Tree (EST) as a subroutine. With a PTAS [1, 15] for EST, the approximation
ratio of their algorithm is 4/3 + ε for k = 2 and (5 + 4

√
2)/7 + ε ≈ 1.5224 + ε for k = 3.

Our Contribution. We introduce and analyze two intuitive approximation algorithms for MLST –
bottom-up and top-down; see Section 2.1. The bottom-up heuristic uses a Steiner tree at the
bottom level for the higher levels after pruning unnecessary edges at each level. The top-down
heuristic first computes a Steiner tree on the top level. Then it passes edges down from level to
level until the bottom level terminals are spanned.

We then propose a composite heuristic that generalizes these and examines all possible 2k−1

(partial) top-down and bottom-up combinations and returns the one with the lowest cost; see
Section 2.2. We propose a linear program that finds the approximation ratio of the composite
heuristic for any fixed value of k. We compute the explicit approximation ratios for up to 22 levels,
which turn out to be better than those of previously known algorithms. The composite heuristic
requires, however, 2k STP computations.

Therefore, we propose a procedure that achieves the same approximation ratio as the composite
heuristic but needs only 2k STP computations. In particular, it achieves a ratio of 1.5ρ for k =
3 levels, which settles a question posed by Karpinski et al. [13] who were asking whether the
1.5224+ε-approximation of Xue at al. [24] can be improved for k = 3. Note that Xue et al. treated
the Euclidean case, so their ratio does not include the factor ρ. We generalize an integer linear
programming (ILP) formulation for STP [18] to obtain an exact algorithm for MLST; see Section 3.
We experimentally evaluate several approximation and exact algorithms on a wide range of problem
instances; see Section 4. The results show that the new algorithms are also surprisingly good in
practice. We conclude in Section 5.

2 Approximation Algorithms

In this section we propose several approximation algorithms for MLST. In Section 2.1, we show
that the natural approach of computing edge sets either from top to bottom or vice versa, already
give O(k)-approximations; we call these two approaches top-down and bottom-up, and denote their
cost by TOP and BOT, respectively. Then, we show that running the two approaches and selecting
the solution with minimum cost produces a better approximation ratio than either top-down or
bottom-up.

In Section 2.2, we propose a composite approach that mixes the top-down and bottom-up
approaches by solving STP on a certain subset of levels, then propagating the chosen edges to
higher and lower levels in a way similar to the previous approaches. We then run the algorithm for
each of the 2k−1 possible subsets, and select the solution with minimum cost. For relatively small
values of k (k ≤ 22), our results improve over the state of the art.

2.1 Top-down and Bottom-up approaches

We present top-down and bottom-up approaches for computing approximate multi-level Steiner
trees. The approaches are similar to the MST and Forward Steiner Tree (FST) heuristics by
Balakrishnan et al. [2]; however, we generalize the analysis to an arbitrary number of levels.

In the top-down approach, we compute an exact or approximate Steiner tree ETOP,1 spanning
T1. Then we modify the edge weights by setting c(e) := 0 for every edge e ∈ ETOP,1. In the
resulting graph, we compute a Steiner tree ETOP,2 spanning the terminals in T2. This extends
ETOP,1 in a greedy way to span the terminals in T2 not already spanned by ETOP,1. Iterating this
procedure for all levels yields a solution ETOP,1 ⊆ · · · ⊆ ETOP,k ⊆ E with cost TOP.
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In the bottom-up approach, we compute a Steiner tree EBOT,k spanning the terminals Tk in
level k. Then, for each level `, we obtain EBOT,` as the smallest subtree of EBOT,k that spans all
the terminals in T`, giving a solution with cost BOT.

A natural approach is to run both top-down and bottom-up approaches and select the solution
with minimum cost. This yields an approximation ratio better than those from top-down or bottom-
up. Let ρ ≥ 1 denote the approximation ratio for STP (that is, ρ = 1 corresponds to using an exact
STP subroutine).

Theorem 1. For k ≥ 2 levels, the top-down approach is a k+1
2 ρ-approximation to MLST, the

bottom-up approach is a kρ-approximation, and taking the minimum of TOP and BOT is a k+2
3 ρ-

approximation.

Proof. Let TOP be the total cost produced by the top-down approach, and let TOP` = c(ETOP,`\ETOP,`−1)
denote the cost of edges on level ` but not level `− 1, produced by the top-down approach, so that
TOP = 2TOP1 + TOP2. Define BOT and BOT` analogously. Let MIN` denote the cost of a
minimum Steiner tree over terminals T` with original edge weights, independently of other levels.

Lemma 1. The following inequalities relate TOP with OPT:

TOP1 ≤ ρOPT1 (1)

TOP2 ≤ ρ(OPT1 + OPT2) (2)

Proof. (1) follows from the fact that ETOP,1 is a ρ-approximation for STP over T1, that is, TOP1 ≤
ρMIN1 ≤ ρOPT1. To show (2), note that TOP2 is at most ρ times the cost (denote MIN′2) of a
minimum Steiner tree over T2 in the instance obtained by setting c(e) = 0 for each e ∈ ETOP,1.
Thus, TOP2 ≤ ρMIN′2 ≤ ρMIN2. Additionally, since EOPT,2 spans T2 by definition, we have
MIN2 ≤ OPT1 + OPT2, so TOP2 ≤ ρ(OPT1 + OPT2) as desired.

Combining (1) and (2), we have TOP = 2TOP1 + TOP2 ≤ 3ρOPT1 + ρOPT2 ≤ 3ρOPT1 +
3
2ρOPT2 = 3

2ρOPT, and hence the top-down approach provides a 3
2ρ-approximation when k = 2.

Analogously to Lemma 1 in the two-level case, we have that TOP` ≤ ρ(OPT1 + OPT2 +
. . . + OPT`) for all 1 ≤ ` ≤ k. This holds as TOP` ≤ ρMIN′`, where MIN′` denotes the cost of
the minimum Steiner tree over T`, with edges from ETOP,`−1 having weight set to zero. Then
TOP` ≤ ρMIN′` ≤ ρMIN` ≤ ρ(OPT1 + OPT2 + . . .+ OPT`).

Combining yields

TOP = kTOP1 + (k − 1)TOP2 + . . .+ 1TOPk

≤ kρOPT1 + (k − 1)ρ(OPT1 + OPT2) + . . .+ 1ρ(OPT1 + OPT2 + . . .+ OPTk)

= ρ

((
k + 1

2

)
OPT1 +

(
k

2

)
OPT2 + . . .+

(
2

2

)
OPTk

)
≤ k + 1

2
ρOPT.

In Fig. 2 we provide an example showing that our analysis is tight for ρ = 1.

Lemma 2. The following inequality relates BOT with OPT for the two-level case:

BOT1 + BOT2 ≤ ρ(OPT1 + OPT2)

Proof. This follows from the fact that BOT1 + BOT2 ≤ ρMIN2, and that the tree with cost
OPT1 + OPT2 spans T2 with cost at least MIN2.
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Figure 2: Analysis of the top-down approach (light and dark blue) in the 2-layer case is asymp-
totically tight (optimal solution light and dark red). The dark vertices and edges are on the top
level, the white vertices and light edges are on the bottom level. In this example, OPT = 2`, while
TOP = 2(`− ε) + `− 1 = 3`− 2ε− 1.
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Figure 3: Analysis of the bottom-up approach (light and dark green) in the 2-layer case is asymp-
totically tight (optimal solution in light and dark red). In this example, OPT = ` + 1 + 2ε, while
BOT = 2`.

Hence, BOT = 2BOT1 + BOT2 ≤ 2(BOT1 + BOT2) ≤ 2ρ(OPT1 + OPT2) ≤ 2ρ(2OPT1 +
OPT2) = 2ρOPT.

Analogously to Lemma 2, we have BOT1 +BOT2 + . . .+BOTk ≤ ρMINk ≤ ρ(OPT1 +OPT2 +
. . .+ OPTk). Hence, we have

BOT ≤ k(BOT1 + BOT2 + . . .+ BOTk)

≤ kρ(OPT1 + OPT2 + . . .+ OPTk)

≤ kρOPT.

Again, the approximation ratio (for ρ = 1) is asymptotically tight; see Figure 3.
We show that taking the better of the two solutions returned by the top-down and the bottom-

up approach provides a 4
3ρ-approximation to MLST for k = 2. To prove this, we use the fact that

min{x, y} ≤ αx+ (1− α)y for any real numbers x, y, and α ∈ [0, 1]. Thus,

min{TOP,BOT} ≤ α(3ρOPT1 + ρOPT2) + (1− α)(2ρOPT1 + 2ρOPT2)

= (2 + α)ρOPT1 + (2− α)ρOPT2

Setting α = 2
3 gives min{TOP,BOT} ≤ 8

3ρOPT1 + 4
3ρOPT2 = 4

3ρOPT. Combining the graphs in
Figures 2 and 3, we can show that, asymptotically, the ratio 4

3 is tight.
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To prove Theorem 1 for arbitrary k, we again use the fact that min{TOP,BOT} ≤ αTOP +
(1− α)BOT for any 0 ≤ α ≤ 1. Applying the inequalities for BOT and TOP, we get:

min{TOP,BOT} ≤
k∑
i=1

[((
i+ 1

2

)
− k
)
α+ k

]
ρOPTk−i+1

Since we are comparing min{TOP,BOT} to t · OPT for some approximation ratio t > 1, we
can compare coefficients and find the smallest t ≥ 1 such that the system of inequalities((

k + 1

2

)
− k
)
ρα+ kρ ≤ kt((

k

2

)
− k
)
ρα+ kρ ≤ (k − 1)t

...((
2

2

)
− k
)
ρα+ kρ ≤ t

has a solution α ∈ [0, 1]. Adding the first inequality to k/2 times the last inequality gives k2+2k
2 ρ ≤

3kt
2 ⇒ t ≥ k+2

3 ρ, and it can be shown algebraically that (t, α) = (k+2
3 ρ, 23) simultaneously satisfies

the above inequalities.

2.2 Composite Algorithm

We describe an approach that generalizes the above approaches in order to obtain a better approx-
imation ratio for k > 2 levels. The main idea behind this composite approach is the following: In
the top-down approach, we choose a set of edges ETOP,1 that spans T1, and then propagate this
choice to levels 2, . . . , k by setting the cost of these edges to 0. On the other hand, in the bottom-up
approach, we choose a set of edges EBOT,k that spans Tk, which is propagated to levels k−1, . . . , 1.
The idea is that for k > 2, we can choose a set of intermediate levels and propagate our choices
between these levels in a top-down manner, and to the levels lying in between them in a bottom-up
manner.

Formally, let Q = {`1, `2, . . . , `m} with 1 ≤ `1 < `2 < · · · < `m = k be a subset of levels sorted
in increasing order. We first compute a Steiner tree E`1 = ST (G,T`1) for level `1, and then use
it to construct trees E`1−1, . . . , E1 similar to the bottom-up approach. Then, we set the weights
of E`1 to zero (as in the top-down approach) and compute a Steiner tree E`2 = ST (G′, T`2) for
level `2 in the reweighed graph. Again, we can use E`2 to construct the trees E`2−1 to E`1+1.
Repeating this procedure until spanning E`m = Ek results in a solution to MLST. Note that the
top-down and bottom-up heuristics are special cases of this setting, with Q = {1, 2, . . . , k} and
Q = {k}, respectively. Figure 4 provides an illustration of the propagations in the top-down, in
the bottom-up, and in a general heuristic.

For any choice of Q, we have CMP(Q) ≤ ρ
∑m

i=1(k − `i−1)MIN`i , with the convention `0 = 0.

Using the lower bound OPT ≥
∑k

`=1 MIN`, we can find an upper bound for the approximation

ratio t. Without loss of generality, assume
∑k

`=1 MIN` = 1. Also, since all the equations and
inequalities scale by ρ, we let ρ = 1. Hence, we have:

t =
CMP(Q)

OPT
≤
ρ
∑m

i=1(k − `i−1)MIN`i∑k
`=1 MIN`

=
m∑
i=1

(k − `i−1)MIN`i .
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As observed above, both the top-down and the bottom-up algorithms are special cases of
the 2k−1 heuristics generated in the composite approach. For the top-down heuristic, TOP =
CMP({1, 2, . . . , k}) ≤ kMIN1 + (k − 1)MIN2 + . . .+ MINk. The worst case happens when MIN1 =
MIN2 = · · · = MINk = 1/k, for which we find t ≤ (k + (k − 1) + · · ·+ 1)/k = (k + 1)/2. For the
bottom-up heuristic, BOT = CMP({k}) ≤ kMINk. The worst case happens when MIN1 = · · · =
MINk−1 = 0 and MINk = 1, for which we find t ≤ k.

An important choice of Q is Q = {k − 2q + 1 : 0 ≤ q ≤ qmax = blog2 kc}. For k = 2qmax+1 − 1,
the worst case happens when MIN1 = · · · = MINk−2qmax = 0 and MINk−2qmax+1 = · · · = MINk =
1/2qmax . This results in t ≤

∑qmax
q=0 2q+1 − 1/2qmax ≤ 2qmax+2/2qmax = 4. Indeed, this choice of Q can

be deduced from the 4ρ-approximation algorithm (QoS) of Charikar et al. [6].
Note that, when k = 2, the only 22−1 = 2 generated heuristics are the top-down and the

bottom-up, and hence CMP = min{TOP,BOT}. This does not hold for larger values of k, since
the composite approach evaluates more heuristics and obtains a better ratio. Overall, {1, . . . , k}
has 2k−1 possible subsets, so there are 2k−1 different heuristics. The composite algorithm executes
all of them and picks the solution with minimum cost. Thus:

CMP = min
Q⊆{1,...,k}

CMP(Q),

where CMP(Q) denotes the cost for a specific subset Q of {1, . . . , k}.
More generally, for k ≥ 2, the composite heuristic produces a t-approximation, where t is the

largest real number that simultaneously satisfies the 2k−1 inequalities

t ≤
m∑
i=1

(k − `i−1)MIN`i ,

for all subsets {`1, . . . , `m} ⊆ {1, 2, . . . , k} and all choices of MIN1, . . . ,MINk such that MIN1 ≤
MIN2 ≤ . . . ≤ MINk and

∑k
`=1 MIN` = 1. The system of 2k−1 inequalities can be expressed in

matrix form as:
Mks ≥ t · 12k−1×1

where s = [MIN1,MIN2, · · · ,MINk]
T and Mk is a 2k−1 × k matrix that can be constructed recur-

sively as

Mk =

[
k · 12k−2×1 Mk−1
02k−2×1 Pk−1 +Mk−1

]
, Pk =

[
12k−2×1 02k−2×(k−1)
02k−2×1 Pk−1

]
,

starting with M1 = [1], P1 = [1]. Therefore, for each value of k, we can find the approximation
ratio of the composite algorithm by solving a linear program (LP).

Corollary 1. For any k = 2, . . . , 22, the composite algorithm yields a t-approximation to MLST,
where the values of t are listed in Figure 5.

Neglecting the factor ρ for now, the approximation ratio t = 3/2 for k = 3 is better than the
ratio of (5 + 4

√
2)/7 + ε ≈ 1.5224 + ε guaranteed by Xue et al. [24] for the Euclidean case. (The

additive constant ε in their ratio stems from using Arora’s PTAS as a subroutine for Euclidean
STP, which corresponds to the multiplicative constant ρ for using an STP algorithm as a subroutine
for MLST.) Recall that an improvement for k = 3 was posed as an open problem by Karpinski et
al. [13]. Also, for each of the cases 4 ≤ k ≤ 22 our results in Corollary 1 improve the approximation
ratios of eρ ≈ 2.718ρ and 2.454ρ guaranteed by Charikar et al. [6] and by Karpinski et al. [13],
respectively. On the other hand, our ratios increase with k, while their results hold for every k.
The function in Figure 5 suggests that the approximation ratio of the composite algorithm will stay
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123k − 1k

Q = {7 = k}

Q = {1, 2, . . . , 7 = k}

`1= k

`1=1

`1=2Q = {2, 6, 7 = k}

`2=6

Level:

Bottom-up:

Top-down:

Composite:

Figure 4: Illustration of a composite heuristic for an arbitrary choice of Q = {`1, `2, · · · , `m}.
Blue arrows pointing right indicate bottom-up propagations (prune E`i to get E`i−1

). Orange
curved arrows pointing left indicate top-down propagations (set to 0 the cost of edges in E`i when
computing E`i+1

). Red arrows indicate where the algorithms starts. Bottom-up and top-down
heuristics are special cases with Q = {k}, and Q = {1, 2, . . . , k}, respectively.

below 2.454ρ for values of k much larger than 22. We found that the tangent line to the function
at k = 19 intersects t/ρ = 2.454 only at k = 50.

Since the number of heuristics in the composite algorithm grows exponentially with k, it is
computationally efficient only for small k. Indeed, the composite heuristic for a k−level MLST
problem requires 2k STP computations. In the following, we show that we can achieve the same
approximation guarantee through at most 2k STP computations only.

Theorem 2. For a given instance of the MLST problem, a specific choice of Q∗ can be found
through k STP computations for which CMP(Q∗) is guaranteed the theoretical approximation
ratio of the composite heuristic.

Proof. Given a graph G = (V,E) with cost function c, and terminal nodes T1 ⊂ T2 ⊂ · · · ⊂
Tk ⊆ V , compute the Steiner trees on every level and find costs MIN` = c(ST (G,T`)). Since this
s = [MIN1, . . . ,MINk]

T is not necessarily the optimal solution (assuming a worst-case scenario)
to the LP for computing the approximation ratio t, there exists at least one constraint for which∑m

i=1(k − `i−1)MIN`i ≤ t
∑k

`=1 MIN`. An instance of such constraint corresponds to the index
1 ≤ q ≤ 2k−1 with the minimum entry in the vector Mks. Let Q∗ ⊆ {1, . . . , k} be the index set
corresponding to non-zero entries in the qth row of Mk. We have CMP(Q∗) ≤ t ·OPT.

2.3 Hybrid Algorithm

We implemented the additional hybrid heuristic to overcome a potential limitation of all our other
heuristics. Namely, in each of these algorithms we consider the levels in a certain order, and
propagate the choices done at each level to those following in this order, but we never consider any
level twice. In this way, if we make a bad choice at some point, we will never be able to recover
it. The hybrid approach, instead, has the property that levels may be considered more than once.
Also, the choices done at a certain level are still propagated to the following levels, but in a weaker
way than in the other heuristics. In particular, instead of setting their weights to 0, we just set
them to a fraction of their original cost.

More specifically, in order to compute HybridMLST(G,T1, . . . , Tk), we first compute (T2, . . . , Tk) =
HybridMLST(G,T2, . . . , Tk) recursively. Then, we modify weights of G so that, for each level `,
the weight of the edges corresponding to T` are scaled by `−1

k . We then compute the Steiner tree

T hyb
1 on this reweighed graph, which will be part of our final solution. In order to compute the

other trees of the solution, we restore the original weights for the edges in G, except for those of
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k t/ρ

1 1.000
2 1.333
3 1.500
4 1.630
5 1.713
6 1.778
7 1.828
8 1.869
9 1.905

10 1.936
11 1.963

k t/ρ

12 1.986
13 2.007
14 2.025
15 2.041
16 2.056
17 2.070
18 2.083
19 2.094
20 2.106
21 2.116
22 2.125

Figure 5: Approximation ratios for the composite algorithm for k = 1, . . . , 22 (blue curve), com-
pared to the ratio t/ρ = e (red dashed line) guaranteed by the algorithm of Charikar et al. [6] and
t/ρ = 2.454 (green dashed line) guaranteed by the algorithm of Karpinski et al. [13]. The table to
the right lists the exact values for the ratio t/ρ.

T hyb
1 , which are set to 0. Let G′ be this reweighed graph. We then apply the same procedure

to the instance HybridMLST(G′, T2, . . . , Tk) to eventually obtain (T hyb
2 , . . . , T hyb

k ). Note that
HybridMLST(G,T ) = SteinerTree(G,T ).

We observe that the hybrid approach for k = 2 produces an approximation with the same ratio
as min(TOP,BOT) and the composite, namely 4

3 , as we show in Theorem 3, while for larger values
of k we have no guarantee. On the other hand, we will see in the following that this approach
was quite stable in our tests, performing well on all the test suites, often better than all the other
approaches.

We analyze the hybrid algorithm and prove that, for k = 2, it guarantees the same approxima-
tion ratio as min(TOP,BOT) and the composite algorithm.

Namely, we start by computing a Steiner tree EBOT,2 that spans the set of terminals T2. Then,
we construct a graph G′ = (V,E, c′), where c′ is defined as

c′(e) 7→

{
c(e)/2 if e ∈ EBOT,2

c(e) otherwise.

Now we compute the Steiner tree E′TOP,1 that spans T1 on G′. As a last step, we construct a graph
G′′ = (V,E, c′′), where

c′′ 7→

{
0 if e ∈ E′TOP,1

c(e) otherwise.

and compute the Steiner-tree E′′BOT,2 spanning T2 on G′′.

Theorem 3. The hybrid algorithm yields a 4
3 -approximation to the 2-level MLST.

Proof. The optimal solution for the 2-level MLST is lower-bounded as (BOT2 + BOT1) + TOP1 ≤
OPT, where BOT` is the cost of the optimal Steiner-tree on level ` and TOP` respectively. Let
HY B1 denote the cost of the subtree of E′′BOT,2 spanning all terminals of T1. We can split HYB1 =
HYB1,a + HYB1,b, where HYB1,a denotes the cost of edges in E′′BOT,2 ∩EBOT,2 and HYB1,b denotes
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Figure 6: The approximation ratio 4/3 of Hybrid for k = 2 levels is tight. a) A hub-and-spoke
graph. Terminal nodes in T1 are square shaped and terminal nodes in T2 \ T1 are circle shaped.
The Steiner tree on the bottom level is the spike graph shown in blue. b) Reweighed graph G′. The
Steiner tree on the top level is shown in red. c) Solution of the Hybrid heuristic algorithm which
has cost 4n. d) The optimal MLST solution of cost 3n+ 1. The ratio of the two approaches 4/3.

the cost of E′′BOT,2 \ EBOT,2 in comparison to the initial solution on G. Since E′BOT,1 corresponds

to a Steiner-tree spanning T1 on the reweighed graph G′, we have 1
2HYB1,a + HYB1,b ≤ 1

2BOT1,
since EBOT,1 spans T1 and each edge supports half of its cost in the reweighed graph. Another tree
that spans T1 is ETOP,1 and thereby 1

2HYB1,a + HYB1,b ≤ TOP1 holds. The combination of the
two inequalities suggest:

HYB1 = HYB1,a + HYB1,b ≤ min{1

2
BOT1,TOP1}+

1

2
HYB1,a

Using edges of EBOT,2, we can construct a tree that expands E′′BOT,1 to a tree which covers T2.
Therefore, HYB2 ≤ BOT1 + BOT2 −HYB1,a. Here HYB1,a is subtracted, since HYB1,a is already
part of E′′BOT,1.

Since min{12BOT1,TOP1} ≤ 2
3(12BOT1) + 1

3TOP1 = 1
3(BOT1 + TOP1) ≤ 1

3(BOT2 + BOT1 +
TOP1) ≤ 1

3OPT, we can deduce from the previous inequalities, that

2HYB1 + HYB2 ≤ BOT1 + BOT2 + 2 min{1

2
BOT1,TOP1}

≤ OPT + min{1

2
BOT1,TOP1}

≤ 4

3
OPT

As shown in Figure 6, we can construct a graph for which a 4
3 approximation ratio is realized

through the hybrid heuristic. Therefore, the 4
3 ratio is tight.
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3 Exact Algorithm

We first provide an integer linear programming (ILP) based on cuts which is very easy to under-
stand.

3.1 ILP based on Cuts

This is the standard ILP formulation of the single-level Steiner tree problem. With δ(S) := {(u, v) ∈
E | u ∈ S, v /∈ S}, we refer to the set of edges that have exactly one endpoint in S.

Minimize
∑
e∈E

c(e) · xe

subject to
∑
e∈δ(S)

xe ≥ 1 ∀S ⊂ V with ∅ 6= S ∩ T 6= T

xe ∈ {0, 1} ∀e ∈ E

This formulation generalizes to the k-level multilevel Steiner problem by introducing for every edge
k variables that indicate if the corresponding edge is in Ei for 1 ≤ i ≤ k.

Minimize

k∑
l=1

∑
e∈E

c(e) · xe,l

subject to
∑
e∈δ(S)

xe,l ≥ 1 ∀S ⊂ V with ∅ 6= S ∩ Tl 6= Tl and 1 ≤ l ≤ k

xe,l+1 ≥ xe,l ∀e ∈ E and 1 ≤ l < k
xe,l ∈ {0, 1} ∀e ∈ E and 1 ≤ l ≤ k

3.2 ILP based on Multi-commodity Flow

Recall the well-known flow formulation for STP [2,18]. It assumes that the input graph is directed,
which we can achieve by simply replacing each undirected edge by two directed edges in opposite
directions of the same cost. Let s be a fixed terminal node, the source. An ILP formulation of STP
using multi-commodity flow [23] is as follows:

Minimize
∑

(i,j)∈E

cijyij (3)

subject to
∑

vh∈N(vi)

xpih −
∑

vj∈N(vi)

xpji =


1 i = s

−1 i ∈ T \ {s}
0 i ∈ V \ T

for i ∈ V (4)

xpij ≤ yij (i, j) ∈ E, vp ∈ T (5)

xpij ≥ 0 (i, j) ∈ E, vp ∈ T (6)

yij ∈ {0, 1} (i, j) ∈ E. (7)

where yij is a binary variable indicating whether or not edge (i, j) is included in the solution and
N(v) denotes the neighbors of v. The variable xpij is the amount of commodity p (the amount of flow
between vertices v1 and vp) on edge (i, j). Constraint 6 indicates that flow on an edge is allowed
only if the edge is included in the solution. Constraint 4 dictates that one unit of commodity p
be routed between vertices v1 and vp. In constraint 6 we can view yij as the flow capacity for
commodity p on edge (i, j). Constraints 4–7 indicate that a feasible solution must have a path of
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edges (i.e., yij = 1) between vertex v1 and every vertex belonging to L. Thus we represent the
connectivity of the Steiner tree problem via an embedded multi-commodity network flow problem.

In MLST, if an edge is selected on level `, it must be selected in all lower levels `+ 1, . . . , k. We
introduce binary variables y`uv, where y`uv = 1 if edge uv is selected on level `, and additional flow
variables x`uv for each level `. We constrain that the graph on level ` is a subgraph of the graph on
level `+ 1 as follows:

y`+1
uv ≥ y`uv for ` ∈ {1, 2, . . . , k − 1} and (u, v) ∈ E (8)

We also modify the objective function in the natural way:

Minimize
k∑
`=1

∑
uv∈E

c(u, v) · y`uv (9)

3.3 ILP based on Single Flow

We now model the problem using single flow instead of multi-commodity flow which reduces the
number of variables:

Minimize
∑

(u,v)∈E

c(u, v) · yuv (10)

subject to
∑
vw∈E

xvw −
∑
uv∈E

xuv =


|T | − 1 if v = s

−1 if v ∈ T \ {s} for v ∈ V
0 else

(11)

xuv ≤ (|T | − 1) · yuv (12)

xuv ≥ 0 (13)

yuv ∈ {0, 1} (14)

We can extend this formulation for MLST as we have done in the ILP based on multi-commodity
flow. Note that while the ILP based on cuts is very easy to understand, it considers all O(2|V |)
subsets of V and there is a constraint for every subset. Hence with that formulation, the number
of constraints is exponential in the size of the graph. In the other two formulations, the number
of constraints is polynomial to the size of the graph. We select this single-flow variant as it uses
only one flow per level, while the multi-commodity variant requires multiple flows, one for each
terminal. Since the number of constraints increases with the number of flows, that formulation is
more expensive.

4 Experimental Results

Graph Data Synthesis. The graph data we used in our experiment are synthesized from graph
generative models. In particular, we used four random network generation models: Erdős–Renyi [9],
random geometric [17], Watts–Strogatz [21], and Barabási–Albert [3]. These networks are very well
studied in the literature [16]. A brief overview of each network generation model is as the following.

The Erdős–Renyi model, ER(n, p), assigns an edge to every possible pair among n nodes with
probability p. It is well-known that an instance of ER(n, p) with p = (1 + ε) lnnn is almost surely
connected for ε > 0 [9]. For our experiment n vary from 10 to 100 and p is equal to .25.

13



In the random geometric model, RG(n, rc), n points are uniformly randomly distributed in
the unit square [0, 1]2. In the output graph, each node corresponds to a single point, and nodes
are connected to each other if their Euclidean distance is not larger than a threshold rc. For

rc =

√
(1+ε) lnn

πn with ε > 0, the synthesized graph is almost surely connected [17]. The value of rc
in our experiment is 1.62.

The Watts–Strogatz model, WS(n,K, β), initially creates a ring lattice of constant degree K,
and then rewires each edge with probability 0 ≤ β ≤ 1 while avoiding self-loops or duplicate edges.
Interestingly, the Watts–Strogatz model generates graphs that have the small-world property while
having high clustering coefficient [21]. In our experiment, the values of K and β are equal to 6 and
0.2 respectively.

The Barabási–Albert model, BA(m0,m), uses a preferential attachment mechanism to generate
a growing scale-free network. The model starts with a graph of m0 nodes. Then, each new node
connects to m ≤ m0 existing nodes with probability proportional to their instantaneous degree.
The BA model generates networks with power-law degree distribution, i.e. a few nodes becomes
hubs with extremely large degree [3]. This model is a network growth model. In our experiments,
we let the network grow until a desired network size n is attained. We vary m0 from 10 to 100 in
our experiment. We keep the value of m equal to 5.

In each graph instance, we assign integer edge weights c(e) randomly and uniformly between 1
and 10 inclusive. Even though the generated graphs are almost surely connected, it is possible to
get a disconnected graph. Therefore, in our experiment, we only use connected graphs and discard
the rest. Computational challenges of solving an ILP limit the size of the graphs to a few hundred
in practice.

Selection of Levels and Terminal Nodes. For each graph generated, we solved the MLST for
k = 2, 3, 4, 5. We adopted two strategies for selecting the terminals for each k-level MLST problem:
linear and exponential. In the linear scenario, we select the terminals on each level by randomly
sampling b|V |(`+ 1)/(k+1)c nodes on level ` so that |T`+1|−|T`| ≈ |T`|−|T`−1|. In the exponential
case, we select the terminals at each layer by sampling uniformly randomly b|V |/2k−`c nodes so
that |Tl+1|/|Tl| ≈ |Tl|/|Tl−1|.

To summarize, a single instance of an input to MLST is characterized by four parameters:
network generation model NGM ∈ {ER,RG,WS,BA}, number of nodes |V |, number of levels k,
and the terminal selection method TSM ∈ {Linear,Exponential}.

Algorithms and Outputs. We implemented the bottom-up, top-down, hybrid, and composite
approaches described in Section 2. Finally, we implemented the simple 4-approximation algorithm
by Charikar et al. [6] for the QoS Multicast Tree problem and the ILP described in Section 3 to
evaluate the heuristics.

We used CPLEX 12.6.2 as ILP solver. We distributed the experiment on a high performance
computer (HPC) into multiple tasks. A single task performs the computation of 5 to 50 graphs.
The number of graphs varies because for smaller graphs we can combine more graphs in a single
task. However for larger graphs, the maximum time limit for a single task is not enough if the
number of graphs is large.

For each instance of MLST, we compute the costs of the MLST from the ILP solution (OPT),
the bottom-up solution (BOT), the top-down solution (TOP), the composite heuristic (CMP), the
guaranteed performance heuristic (CMP(Q∗)) heuristic, the hybrid heuristic (Hybrid), and the
simple 4−approximation Quality-of-Service heuristic (QoS) given by Charikar et al. [6]. For the
STP computation we used the 2-approximation algorithm of Gilbert and Pollak [10].

After completing the experiment, we compared the results of the heuristics with exact solutions.
We show the performance ratio APP/OPT for each heuristic, and how they depend on parameters

14



of the experiment setup. For example, we investigate how the performance ratio changes as |V |
increases. Since each instance of the experiment setup involves randomness at different steps, we
generated 5 instances for any fixed setup (e.g., geometric graph, |V | = 100, 5 levels, linear terminal
selection).

We did not compare the running times of our implementations in detail since our Python code
is not optimized in this respect. As a rough measure, however, we list the number of Steiner
tree computations performed by each algorithm in the worst case – BOT: 1, TOP: k, CMP: 2k,
CMP(Q∗): 2k, Hybrid: 2k, and QoS: k.

Results.
Figures 7–10 show how the heuristics perform with regards to the graph size |V |, for the ER,

RG, WS, and BA network models respectively. Since multiple experiment input instances share
the same network size, we have shown minimum, maximum, and mean values. In most of the
cases, the average ratio increases as the number of vertices increases. The composite, hybrid, and
composite-optimum heuristics perform very well in practice.

(a) Bottom-up (b) Top-down (c) Composite

(d) Hybrid (e) Composite optimum (f) Quality of Service

Figure 7: Erdős–Rényi

Next, we examined how the performance ratio of the heuristics changes with the number k of
levels. In our experiments, k = 2, . . . , 5. We show the results using box plots in Figure 11. As the
number of levels increases, the ratio increases in general.

Finally, we examined how the performance of the heuristics compare with the exact solution
as the terminal selection method in levels changes. In our experiments, the node distribution in
levels vary between linear and exponential. We show the results using box plots in Figure 12.
In most of the cases the ratio is higher when the node distribution is exponential.
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(a) Bottom-up (b) Top-down (c) Composite

(d) Hybrid (e) Composite optimum (f) Quality of Service

Figure 8: Geometric

(a) Bottom-up (b) Top-down (c) Composite

(d) Hybrid (e) Composite optimum (f) Quality of Service

Figure 9: Watts–Strogatz
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(a) Bottom-up (b) Top-down (c) Composite

(d) Hybrid (e) Composite optimum (f) Quality of Service

Figure 10: Barabási–Albert

5 Conclusions

We presented multiple heuristics for the MLST problem and analyzed them both theoretically and
experimentally. Natural open problems include determining inapproximability results for the k-level
MLST, determining a closed-form expression for the approximation ratio t given by the composite
heuristic (Section 2.2), and generalizing the notion of multi-level graphs to related problems (such
as the node-weighted Steiner tree problem).

17



(a) Barabási–Albert (b) Erdős–Rényi

(c) Geometric (d) Watts–Strogatz

Figure 11: Performance as a function of the number k of levels.
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(a) Barabási–Albert (b) Erdős–Rényi

(c) Geometric (d) Watts–Strogatz

Figure 12: Heuristic performance as a function of the terminal selection method.
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