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Fig. 1: Example lineups from our evaluation. Both Fig. 1a and 1b show the same univariate datasets. 19 of these charts are “innocent”
random samples from a Gaussian. One “guilty” chart is mostly random draws, but 20% of samples have an identical value (an
extraneous mode). The oversmoothed density plot makes this abnormality difficult to see (participants were only 35% accurate at
picking out the correct density plot). Low opacity dot plots, however, make the dark black dot of the mode easier to detect (85%
accuracy). See §5.1 for the right answer.

Abstract—Famous examples such as Anscombe’s Quartet highlight that one of the core benefits of visualizations is allowing people
to discover visual patterns that might otherwise be hidden by summary statistics. This visual inspection is particularly important in
exploratory data analysis, where analysts can use visualizations such as histograms and dot plots to identify data quality issues. Yet,
these visualizations are driven by parameters such as histogram bin size or mark opacity that have a great deal of impact on the final
visual appearance of the chart, but are rarely optimized to make important features visible. In this paper, we show that data flaws have
varying impact on the visual features of visualizations, and that the adversarial or merely uncritical setting of design parameters of
visualizations can obscure the visual signatures of these flaws. Drawing on the framework of Algebraic Visualization Design, we present
the results of a crowdsourced study showing that common visualization types can appear to reasonably summarize distributional
data while hiding large and important flaws such as missing data and extraneous modes. We make use of these results to propose
additional best practices for visualizations of distributions for data quality tasks.

Index Terms—Graphical perception, data quality, univariate visualizations

1 INTRODUCTION

The visualization of distributions of variables along particular data
dimensions is a critical step in Exploratory Data Analysis (EDA) [47].
Summary statistics, by themselves, may not capture important aspects
of the data [6, 34]. For large and complex datasets, visualizations of
distributions work as “sanity checks” by providing evidence that the
underlying data are reasonably free of flaws such as missing values
or excessive noise that might affect later analysis, and by informing
hypotheses about interactions and relationships among variables. Sanity
checks also build trust in the underlying data processes. These sanity
checks assume that data flaws produce characteristic and legible visual
signatures in visualizations. This paper investigates the validity of that
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assumption by studying how well different distribution visualizations
show data flaws, and by showing that choices (possibly careless or
malicious) of visualization design parameters can make the visual
signatures of data flaws more or less prominent.

We frame our study in terms of Kindlmann and Scheidegger’s Alge-
braic Visualization Design (AVD) [30]. AVD considers visual encod-
ings in terms of possible alternative worlds: if the data were different
in an important way, how would that affect the visualization? A change
in the dataset, depicted as a transformation α : D→ D in data space,
is paired via the visual encoding with precisely one transformation in
image space ω : V → V . In this paper, we define the data change α

as adding some flaw to the otherwise “clean” data. We then assess
the legibility of the corresponding visualization change ω by using
Wickham et al.’s line-up protocol [49] to measure the accuracy with
which viewers can detect flawed data by identifying its visualization
among visualizations of clean data instances.

Concretely, we show through simulations and a crowdsourced study
that different data quality issues (such as extraneous modes, missing
values, and outliers) have differing levels of detectability across stan-
dard visualization techniques (such as histograms, density plots, and
dot plots). Furthermore, the detectability depends strongly on visu-
alization design parameters (such as the number of histogram bins,



kernel bandwidth, and mark opacity): many visualizations that look
“reasonable” can effectively hide data quality issues from the viewer.

This paper therefore functions as a sort of vulnerability analysis: we
show it is possible to create visualizations that seem “plausible” (in
that their design parameters are within normal bounds, and they pass
the visual sanity check of revealing nothing untoward in the underlying
data) but hide crucial data flaws. We show that no one standard visual-
ization design is robust to all of these sorts of attacks, but that each have
different patterns of vulnerability. We conclude with recommendations
that will improve the robustness and reliability of visual sanity checks.

2 VISUALIZATIONS OF DISTRIBUTIONS

In this work, we focus on visualizations of univariate distributions for
various reasons: EDA often starts with creating univariate distribution
visualizations, they are simpler (by having fewer design parameters)
than multivariate ones, and they have been extensively studied in both
the statistics and visualization communities. Therefore, while we ac-
knowledge that sanity checks can occur at all scales and steps of the
analysis process, we use univariate visualizations as a testbed for illus-
trating that data flaws can have a complex and potentially problematic
relationship with visual features. A full review of all techniques for
visualizing distributions is outside the scope of this paper, so we discuss
a small set of visualization types commonly encountered in EDA tools,
focusing on the design parameters that impact their visual design, and
how these parameters are set by default.

The visualization deficiencies we highlight may be ameliorated with
interactive user-driven adjustment of design parameters, but we argue
that this does not solve the fundamental issues for visualizations as
sanity checks. Interactively setting parameters for sanity checking
requires the analyst to manually explore the design space for each
data dimension independently, which is expensive in terms of time and
the analyst’s attention. On the other hand, default parameter settings
(data-driven or otherwise) can produce “plausible” visualizations that
nevertheless hide important issues. The analyst may not know that
there are features that could be revealed through interaction, and would
therefore have no incentive to alter the visualization.

We maintain that the default settings of designs parameters have an
outsized influence on how data dimensions are spot-checked, so we
consider default parameters across several common types of univariate
visualizations in common visual analytics systems.

2.1 Histograms

Data preparation and summarization often uses histograms, which
count data occurrences in discrete bins (as in Fig. 7). The main design
parameter is therefore the size and location of bins. Using too many bins
can produce sparse or noisy counts that obscure the overall distribution
shape, but with too few bins, spatial modes or trends may be lost.

Seemingly reasonable default settings for histogram bin size can be
computed by various “rules of thumb”, based on statistical assumptions
that may or may not hold for real datasets. For instance, Sturges’ rule
for histogram bins is derived from an assumption that the distribution to
be estimated is a unimodal Gaussian [42]. This results in over-smoothed
histograms when the data are not normal (for instance, if the data are
bimodal, or have long-tailed outliers).

Data analysis systems may also support more complex methods,
but simplistic rules tend to be the default. For example, Sturges’
rule is the default for R [3] and D3 [1], and a modified form of the
Freedman-Diaconis rule [18] is the default histogram binning method
in Tableau [4]. Lunzner & McNamara [32] explored “stretchy” his-
tograms that allow the user to interactively compare histogram binning
parameters, but acknowledge that very few standard data analysis tools
fluidly support interactive re-binning with immediate visual feedback.

2.2 Density Plots

Density plots use an underlying Kernel Density Estimate (KDE) to cre-
ate a smooth curve based on the observed data (as in Fig. 1a). The type
and bandwidth of these kernels has a large impact on the resulting plot.
As with histograms, there is a tradeoff between choosing a bandwidth

that is too large (and so over-smooths the KDE) or too small (and so
under-smooths the KDE) [41].

The default kernel bandwidth setting is also frequently based on
rules of thumb, such as the commonly used Silverman’s rule [43], the
default in R [2]. More sophisticated data-driven methods for selecting
the bandwidth exist (such as Sheather & Jones’s pilot derivative-based
method [44]), but these often require complex calculations that may
not scale to large numbers of points, or they require sampling or other
approximation techniques that may not be stable across runs (see Jones
et al. [26] or Park & Marron [37] for a survey). Silverman’s rule, as
with Sturges’ rule, assumes that the underlying sampling distribution
is a unimodal Gaussian, and so can oversmooth data where these as-
sumptions are violated. With the exception of 2D density heat maps
(which typically have adjustable bandwidths), we are not aware of
any common EDA system that affords the interactive setting of kernel
bandwidths with immediate visual feedback.

2.3 Dot Plots

Dot plots and strip plots encode each sample of a distribution as a dot or
a line, respectively (as in Fig. 1b). They can be considered as a special
one-dimensional case of scatterplots. While we focus on dot plots in
this paper, our guidelines apply to most visualizations of distributions
where one sample directly corresponds with one mark.

Overplotting in scatterplots can obscure distributional data. This is
especially true for dot plots: due to the curse of dimensionality, over-
plotting is more likely to occur in univariate samples of a distribution
than in bivariate samples of the same distribution. One technique to
reduce overplotting is to jitter the marks, as in a beeswarm plot [17]).
Adding jitter increases the vertical space taken up by the plot, and might
be impractical if there are a large number of points to be plotted.

Altering the mark opacity is a common way to reduce the effects of
overplotting. However, just as with histogram binning and KDE, this
opacity must be chosen with respect to the structure of the data. With
too much opacity, the modes and the shape of the distribution become
invisible with overplotting. With too little opacity, outliers and smaller
structures are impossible to see. Recent approaches to optimize mark
opacity in scatterplots rely on screen space image quality metrics [33,
35] and have not seen wide adoption in common visualization systems.
The default opacity of marks in EDA systems we examined is either
fully opaque (as in R and Tableau), or a constant opacity (for example in
Vega-Lite [40], the default opacity of non-aggregated marks is 0.7 [5]).
Unlike our previous visualization examples, common EDA systems
like Tableau, Excel, and PowerBI do allow the interactive manipulation
of dot plot opacity through sliders with immediate visual feedback.
However, in contrast, to our knowledge, no common visual analytics
system provides data-driven procedures for optimizing dot plot opacity,
or provides data-driven defaults.

Reducing the spatial extent of marks can also address overplotting,
either by reducing mark size, or by replacing closed shapes with open
ones. In Tableau and Vega-Lite, for instance, the default dot plot mark is
an open, rather than filled, circle. However, as with opacity, the default
size of the mark in dot plots is usually a constant, rather than a data-
driven, value. There is also an interplay between size and opacity: the
perceptual discriminability of the lightness of marks (and so, implicitly,
the density) becomes poorer as the marks become smaller [45].

2.4 Other Univariate Visualizations

Other strategies for visualizing distributions and sampled data avoid
presenting the samples directly, but instead visualize various summary
statistics, such as showing the mean with a dot and variance with error
bars. As another example, boxplots can communicate quartile informa-
tion, and can also be extended to communicate more complex summary
statistics [39]. However, for the same reasons that summary statistics
alone are not sufficient as sanity checks [6, 34], visualizations of these
summary statistics by themselves may also fail to indicate important
data properties or flaws. In addition, correctly interpreting summary
statistics can require knowledge outside the analyst’s expertise; error
bars in particular are often misinterpreted [8, 11].



Fig. 2: The commutative diagram in this figure provides a way to
evaluate visualizations of population samples. If a change α occurs
in the population distribution (for instance, the introduction of a flaw
such as a region of missing values), we expect to see a proportionally
large change in the visualization ω . However, the data to be encoded
is often a sample of this unknown distribution: this sampling s can
also introduce visual changes in the resulting mapping from data to
visualization v.

Of particular interest to us are “hybrid” or “ensemble” visualizations
of distributions: these classes of visualization either combine layout
and plotting techniques from multiple designs into one novel design, or
juxtapose or superimpose multiple chart types together, respectively.

Wilkinson’s dot plot [50] is a hybrid visualization that combines dot
plots and histograms by placing marks into discrete columns, stacking
marks when there would otherwise be overplotting. This method re-
places the parameter of histogram bin width with that of the mark size:
changes in mark size can cause large shifts in where columns are laid
out. As with beeswarm plots [17], Wilkinson dot plots also take up
more space, depending on the mark size and modes of the distribution.

As examples of ensemble charts, violin plots [22] combine a density
plot with a box plot, and bean plots [27] combine a density plot with a
strip plot. These combinations are meant to supplement the deficiencies
of their component visualizations, but are somewhat ad hoc: it is not
clear what sorts of ensembles best support different sorts of sanity
checks. Designers must also independently set parameters for each of
the component visualizations.

3 ALGEBRAIC VISUALIZATION

Kindlmann & Scheidegger’s framework of algebraic visualization de-
sign (AVD) suggests two principles for creating and evaluating visual-
izations [30]. First, visualizations should be assessed by reference to
a potential transformation of the data, denoted in AVD by α . Every
function α that transforms the input induces a function that transforms
the actual image produced by the visualization, denoted by ω . By con-
sidering different ways to transform the input, designers can investigate
how the visualization responds. In AVD, a change in data α that does
not change the visualization output (that is, whose corresponding ω is
the identity) is termed a confuser. Confusers identify ambiguities in
visual mappings by capturing differences in the data that are invisible
to the viewer. Crucially for AVD, αs that are confusers for some visual
mappings are not confusers for other visual mappings. Second, AVD
asserts that visualizations should be invariant to equivalent represen-
tations of the same data. If a visualization produces different outputs
because of the order in which elements (representing a set) are stored
in a list, then the switch from one representation to another is a hallu-
cinator: a way to “trick” the visualization into producing an apparent
change where there should be none.

Our work builds on the observation in AVD that the sampling used
to obtain finite samples from an underlying population can be thought
of as a representation mapping. Figure 2 indicates samplings s1 and
s2 from different data distributions; there are clearly many other pos-
sible sampling mappings from each distribution. If a nontrivial data
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Fig. 3: Different data flaws interact with different visualization map-
pings differently based on the setting of design parameters, producing
a large number of potential ωs. A visualization and parameter setting
that is adept at depicting a certain class of data flaws unambiguously
might be a confuser for another type of flaw.

change α commutes with an identity ω (i.e. no visual change), then
visualization v is discarding information from the data that is necessary
to disambiguate the effect of α . On the other hand, if α is the identity
while ω is not, then the visualization is showing superficial differences
between the different samplings of the same data population, rather
than a feature of the data itself.

Our study models data quality issues (missing data, repeating values,
more outliers) as different αs, and then creates many visualizations
without those flaws but with different sample mappings. If participants
are unable to spot the odd visualization, then one of the two failure
modes described above has occurred: either a significant alteration in
the data failed to produce a large enough change in the visualization to
make it stand out (a confuser), or the visual differences caused by non-
significant sampling variation was sufficient to produce visualizations
that stand out despite having no data alterations (a hallucinator). Note
that, as we will describe in § 5.1.4, our current study cannot distinguish
between these two failure modes.

In addition, our work highlights a complication in applying AVD
to the design and evaluation of real-world visualization designs. AVD
seeks to reduce the number of arbitrary decisions in the course of vi-
sualization design (or, conversely, to point out arbitrary decisions in
potentially sub-optimal designs). The main discussion in AVD focuses
on forced choices and arbitrary features of input representations being
the cause of confusers and hallucinators. Notably, AVD does not explic-
itly model choices that may be required for specifying visual mappings,
independent of the data. These are typically design parameters: the
transparency of dots in a dot plot, the number of bins in a histogram,
or the bandwidth of a density plot. A central observation from our
current work is that different αs require different settings for these
parameters. In other words, we present evidence that appropriately
setting parameters requires not only appropriate data-driven algorithms,
but an understanding of the desired transformations that the viewer
should be able to visually distinguish.

If we model these different parameter settings as different visu-
alization mappings (analogous to how we handle different samples
from a population), then Figure 3 illustrates how we have not many
ω mappings to assess, but we ought to consider the consequences of
an adversarial setting; are there visualization mappings in which it is
possible to hide specific flaws in the data-generation process by making
particularly bad parameter choices?

4 ADVERSARIAL VISUALIZATIONS

Huff’s “How To Lie With Statistics” [24] explores many ways in which
statistics can be manipulated to convey misleading impression of the
data. More recently, Correll & Heer [13] propose the metaphor of
“Black Hat Visualization:” that the designer of a visualization can act as
a “man-in-the-middle” attacker between a dataset and the analyst who
wishes to understand the data. Our work here studies the possibility
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Fig. 4: A synthetic adversarial visualization. We added a “flaw” (in
this case, 10 sample points all with the same value) to a dataset. Visu-
alizations in the left column are of the original distribution; those on
the right are of the flawed distribution. By setting design parameters
adversarially (as in Fig. 4a), we can hide this data flaw. Conversely, we
can set the parameters to highlight the differences (Fig. 4b).

that a designer can create visualizations that seem to accurately convey
data, but in fact hide or obscure important features or flaws, i.e., the
visualizations suffers from confusers, in the AVD sense. It is our
contention that common univariate visualization methods are at risk of
having significant ambiguities, either from the uncritical acceptance
of default parameter settings, or, with the possibility of an adversarial
visualization creator, from intentionally malicious parameter settings.

To explore the adversarial potential of visualizations of distributions,
we created a web-based tool for automatically creating confusers via
adversarial setting of design parameters. That is, given an initial set of
samples, we introduce an α (a data flaws such as noise, mean shifts,
or gaps). We then exhaustively search through a space of “plausible”
design parameters assuming a data range of {0,1}: from 3 to 50 his-
togram bins, KDE bandwidths of 0.1 to 0.25, and dot plot mark radii
of 10 to 25 pixels crossed with mark opacities of 0.2 to 1.0. We report
the parameter settings that minimize the average per-pixel CIELAB
color difference between the visualization of the original and the vi-
sualization of the flawed distribution (an imperfect proxy for ω , ω̂).
The smaller this difference, the worse the confuser, and so the more
successful the “attack.”

Javascript code for creating your own adversarial visualizations
using the p5.js framework is available at https://github.com/
AlgebraicVis/SanityCheck and the supplemental material. Echo-
ing the prior literature, we found that dot plots with high opacity could
successfully “cover up” many data flaws. Similarly, small numbers
of histogram bins, and wide bandwidths, can result in plots that are
virtually identical despite large changes in the underlying distributions.

Fig. 4 shows an example of one such attack. In this case, our original
dataset was 50 samples from a Gaussian. We then introduced a mode
of 10 additional points with the exact same value within the IQR of the
samples. By choosing the design parameters (in this case, the number
of bins in a histogram, size and opacity of points in a dot plot, and
the bandwidth of a KDE) adversarially, we can almost entirely hide
the spike (Fig. 4a). Adding a mode to the data distribution becomes a
confuser: for histograms, the spike occurs in the modal bin, causing
the other bins to renormalize their heights but otherwise keep a similar
shape. For dot plots, small points with maximum opacity hide the
new mode among other, sparser sample points. For the density plot,
the overlarge bandwidth smooths the mode into the rest of the points.
Fig. 4b shows how different parameter settings remove the confuser.

Pixel difference is not always a reasonable proxy for human judg-
ments of similarity in visualization, which focuses on larger-scale visual
structures [36]. We present these examples to show that the visual signa-
ture of data flaws can be quite subtle (or can be made to be subtle) while
still producing visualizations that appear reasonable. Our perceptual
study attempts to address these factors directly, while also measuring
how robust different visualizations are to these sorts of attacks.

5 EVALUATION

For visualizations to work as sanity checks, data flaws must be reliably
visually detectable. This in turn means that the visual signatures associ-
ated with the flaws must be prominent enough to be visible (to avoid
confusers), and robust enough to not be mistaken for visual changes due
to different samplings of the data without flaws (to avoid hallucinators).
We therefore had the following research questions:

1. How good is the general audience at detecting data flaws in stan-
dard visualizations of distributions?

2. Do certain visualizations result in more reliable detectability (and
so work better for sanity checks) than others?

3. How sensitive are these visualizations to the design parameters
required for their construction?

To answer these questions, we performed a crowdsourced experiment
to evaluate how detectable different data flaws are amongst different
visualizations, and how robust this detectability is amongst different
design parameter settings. Our objective was not to fully map out the
space of detectability among features, visualizations, and parameters
of interest. Rather, we seek to give preliminary empirical support for
our claim that data features can have characteristically different visual
impacts on different visualization types, and that the design parameters
of these visualizations, even within reasonable ranges, can make these
visual signatures more or less prominent.

Experimental materials, including data tables and stimuli genera-
tion code, are available at https://github.com/AlgebraicVis/
SanityCheck and the supplemental material.

5.1 Methods
5.1.1 Lineup Protocol
Prior graphical perception studies, such as Harrison et al. [20] and
Szafir [46], measure the signal detection power of different visualiza-
tions through binary forced choice tasks of just noticeable differences
in signal intensity. Other work assessing the perceived similarity be-
tween visualizations exist, often through qualitative metrics such as
Likert scales (e.g., Demiralp et al. [15] and Correll & Gleicher [12]. In
order to address our research questions within the AVD framework, we
required an experimental protocol with aspects of both signal detection
and similarity judgment. We therefore adopted the “visual lineups”

https://github.com/AlgebraicVis/SanityCheck
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https://github.com/AlgebraicVis/SanityCheck
https://github.com/AlgebraicVis/SanityCheck
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Fig. 5: Examples of our data flaws we tested, and their visual signatures
across dot plots, histograms, and density plots. From left to right
are examples of the settings of our design parameters: increasing
mark opacity, decreasing the number of bins, and increasing kernel
bandwidth, respectively.

protocol. The task, as laid out by Wickham et al. [49] is to create a
“police lineup” of n visualizations. One of these visualizations contains
the actual data “culprit” (e.g., the dataset with the signal present). The
other n−1 visualizations contain “innocent” data generated under some
distribution governed by a null hypothesis. The task is then to identity
the culprit. Under the null hypothesis, the probability of selecting
the culprit by chance (the false positive rate) is 1

n . These lineups can
therefore be used as a proxy measure of statistical power.

Hofmann et al. [23], as well as Vanderplas et al. [48], have used
the lineups protocol to determine the varying signal-detection power
of different graphical designs; we use it for a similar purpose here.
Beecham et al. [7] and Klippel et al. [31] similarly use a visual lineups
to assess the impact of different data properties on visual judgments in
maps. The lineup protocol seems to be a reasonably proxy for sanity
checking in EDA, as it entails a visual signal detection task in the
context of sampling error, as per our formalization in Fig. 2.

In our case, our “innocent” data were random draws from a Gaussian,
and the “guilty” data were random draws with some additional data
flaw added. For instance, in Fig. 1, the chart on the bottom left of the
lineup is “guilty.” Each trial of our experiment was a different lineup,

Original Distribution Outliers SpikeGap

Fig. 6: A representation of the αs that we tested in our study, represent-
ing three classes of potential data quality issues. Fig. 5 shows how these
flaws might appear across the visualizations we tested in our study.

with 19 innocent charts, and 1 guilty chart with a flaw. We used 3
different flaw types (Spike, Gap, or Outlier, described below) with 3
different flaw magnitudes (10, 15, or 20 flawed sample points out of
50 total points), across 3 different chart types (dot plot, histogram, or
density plot), and 3 different parameters settings (3 different levels of
mark opacity, bin count, or kernel size for our 3 chart types, described
below), for a resulting 3× 3× 3× 3 within subjects factorial design,
for a total of 81 stimuli.

For training and engagement check purposes, we also included at
least one example of each combination of visualization and flaw type
(so 9 additional stimuli), with a flaw size of 25 abnormal points, and
with parameters we hypothesized to be favorable for detection. These
trials were excluded from analysis.

Each visualization consists of 50 samples from a Gaussian distribu-
tion with a mean of 0.5 and variance 0.15. We clamped samples to the
interval {0,1}. We generated the resulting visualizations as 150×100
pixel svg images using D3 [9].

5.1.2 Flaw Types
While there are many potential data flaws [29], we focused on three:
gaps, spikes, and outliers (Fig. 6). We chose these flaws because they:

• Have a univariate visual signature. That is, the data quality issue
can be identified from visual inspection alone. Errors in aggrega-
tion or correlation may not be visible from a visualization of a
univariate distribution.

• Do not rely on specific semantic information about the domain.
For instance, a negative number would be indicative of a data
quality issue if the data were framed as age values of people, but
would not be if the value were profit/loss information. Crowd-
sourced studies are not always reliable for measuring effects based
on semantic framing [16].

• Have comparable measures of severity, in terms of number of
abnormal points. Other data quality issues may have only two
states: present or absent, and so it may be impossible to adjust to
identify levels or severity or detectability.

We generated flawed datasets of 50− n samples and n abnormal
points via the following strategies:

• Gaps: We randomly sampled 50+n points from the null distri-
bution, and randomly chose a value uniformly from [Q1,Q3]. We
removed the n closest points from this location. This results in
an irregularly sized region of missing values somewhere in the
middle of the distribution.

• Outliers: We randomly sampled 50− n points from the null
distribution. We measured the post-hoc quartiles of these samples.
We then placed n points randomly in either the interval [0,Q1−
1.5∗IQR] or [Q3 +1.5∗IQR,1], whichever was further from the
original sample mean. This results in a “clump” of extreme values
on one end of the distribution.

• Spikes: We randomly sampled 50− n points from the null dis-
tribution. We measured the post-hoc quartiles of the samples,
and randomly chose a value uniformly from [Q1,Q3]. We added
n points with exactly this value to the sample. This results in a
“spiky” mode somewhere in the middle of the distribution.



5.1.3 Visualization Types
As mentioned in §2, a full analysis of univariate types is out of scope
for this paper. We instead focused on three visualizations of distribu-
tions that are common in applications such as R, Tableau, VegaLite,
and other statistical packages: dot plots, histograms, and density plots.
Wilkinson [50] used these visualizations as benchmarks for proposing
new visualizations of distributions, as they scale to arbitrary many
points without requiring the parametric assumptions of other visualiza-
tion types (such as the presumed unimodality of box plots). Consult
Ibrekk & Granger [25] for an empirical analysis of the legibility of
other similar visualizations of distributions with these properties.

The parameters for the visualizations were generated based on scalar
multiples of the observed defaults from prior work, based on the ideal-
ized sample (which would have x̄ = 0.5 and Sx = 0.15):

• Dot plot: We hypothesized that the 0.7 default opacity of Vega-
Lite (and certainly the 1.0 default of other VA tools) would result
in limited dynamic range in opacity in our dot plots. In piloting,
opacities of 0.7 with 50 points produced nearly solid black dot
plots, and so we used opacities of {0.35,0.175,0.0875} in order
to avoid floor effects. While the size of marks is also a parameter
that can obscure data flaws (and, indeed, it is one of the factors in
our attack in §4), we kept a relatively large constant mark radius
of 10 pixels both to limit the amount of tested factors, and to
create situations in which opacity would result in large visual
differences between plots.

• Histogram: Sturges’ rule would provide 7 histogram bins. We
hypothesized that this would result in too few bins, and so created
we histograms with {7,14,28} bins.

• Density Plot: We hypothesized that the bandwidth of 0.07 pro-
vided by Silverman’s rule would result in oversmoothing, and so
used bandwidths of {0.07,0.035,0.0175}.

Fig. 5 shows our data flaws, and how they might appear across the
different design parameters of our visualizations.

5.1.4 Ecological Validity
There are several significant differences between this task and real-
world sanity checks that should promote caution when directly applying
our results. In real-world sanity checks, the analyst is unlikely to
have access to multiple draws from the same sample, but, rather, one
unique dataset. The lineups here complicate flaw detection (in that
there are many candidates to examine for flaws), but also might assist
in discarding false positives (in that the participant is exposed to the
sampling variability first-hand, and so may be better able to distinguish
between sampling error and other sources of error). Our forced-choice
design also alerts people to the existence of a flaw, and gives no option
for participants to refrain from guessing. This prevents the precise
identification of hallucinators (false negatives).

In the instructions, the participants were given only a very simple
prior about the shape of the distribution: “most of the charts will have
the most amount of data in the middle of the chart, and gradually fewer
and fewer data points the further from the center of the chart.” Beyond
this instruction, we did not give any context or fictional framing of
our data, as these narrative framings can complicate crowdsourced
studies [16]. Real-world analysts are likely to have stronger conceptual
models about their data, including knowledge about data format (ages
are non-negative integers that are rarely triple digits, for instance), and
perhaps even a strong prior about the data distribution (word frequency
in texts generally follows Zipf’s law, for instance).

We selected 50 points as our data size as a tradeoff between sampling
variability and the legibility of individual samples. In practice, the
number of points will determine both the legibility of data flaws (1
outlier among a million points may not be visible, for instance) and the
design parameters of the visualization (a dot plot with a million points
may require differing opacity levels than one with only a dozen).

Lastly, for each trial, the participants were informed of the precise
type of flaw they were meant to detect. The full space of dirty data

Fig. 7: An example lineup. 19 charts are innocent random samples
from a Gaussian, one contains a gap where 15 contiguous points have
been removed. When there are only a few histogram bins, these bins are
unlikely to match exactly with the gap; it can be hard to distinguish true
gaps (which will appear as shorter than expected bars) from variation
due to sampling error. That is, the coarse binning functions as a confuser
from an AVD perspective. Participant accuracy at gap-detection for
histograms with 7 bins was 7%, compared to a chance rate of 5%. See
§5.3.4 for the correct answer.

features that an analyst might care about is immense, and a real-world
sanity check would entail a simultaneous search across this entire space,
rather than a directed search for one specific type of abnormality. While
we acknowledge these ecological differences, we argue that the task
captures important aspects of sanity checking as a signal detection task.

5.2 Hypotheses
Based on our testing concerning the visual properties of visualizations
of distributions, we had the following major hypotheses:

• As the number of flawed points increases, accuracy will in-
crease. Our model for this task was signal detection. As such, we
expected that the strength of the signal (in terms of the number of
abnormal points) would result in higher detectability.

• No one visualization would dominate for all flaw types. That
is, we expected an interaction effect between participant accuracy
and visualization type, with no single visualization having con-
sistently higher accuracy. Dot plots highlight individual samples,
whereas histograms and density plots highlight the overall shape
of the distribution. We expected these differing affordances to
have different impacts.

• More liberal parameter settings will result in increased accu-
racy. We define “conservative” parameter settings as low num-
bers of bins in histograms, high opacity points in dot plots, and
large bandwidths in KDEs. By setting these parameters more
liberally, we hypothesized that flaw detection would be easier.

5.3 Results
We report our effect sizes using bootstrapped confidence intervals
of 90% trimmed means, as per Cleveland & McGill [10]. Trimmed
means violate sampling assumptions for standard null-hypothesis tests,
however, and so those tests (such as ANOVAs) are reported based on
standard means.

5.3.1 Participants
We recruited our participants using Prolific.ac. Prolific is a crowd-
working platform focused on deploying online studies. Results from
Prolific are comparable to those of other crowdwork plaforms [38]
such as Amazon’s Mechanical Turk. Turk, in turn, has results that are
comparable to in-person laboratory studies for graphical perception
tasks [21]. We limited our participants to those between 18-65 years of

Prolific.ac
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Fig. 8: Accuracy at identifying which visualization contained a specific
data flaw, given the size of that flaw in turns of abnormal points (out of
50 total points). Confidence intervals represent 95% bootstrapped C.I.s
of the trimmed mean.

age, and with normal or corrected to normal vision. Based on internal
piloting, we rewarded participants with $4, for a target compensation
rate of $8/hour. Participants, on average, completed the task in 22
minutes (σt = 12 min.), for a post-hoc rate of $10.91/hour.

We recruited 32 participants, 21 men, 11 women, µage = 28.5,
σage = 8.2. 26 had at least some college education, of which a further
7 had graduate degrees. We solicited the participants’ self-reported
familiarity with charts and graphs using a 5-point Likert scale, with 1
being least familiar, and 5 being most familiar. The average familiarity
was 2.62, with no participants reporting a familiarity of 5. 2 of our
participants did not answer any of the training stimuli correctly, and so
their responses were excluded from analysis.

5.3.2 Signal Detection

Chance at this task was 1/20 = 0.05%. Across all conditions, par-
ticipant accuracy was 48.6% (95% bootstrapped c.i. [46.1%,51.2%]),
significantly higher than chance, although there was significant vari-
ation in performance across participants (overall accuracies ranging
from 11% for the worst performing participant to 85% for the best per-
forming participant). The average response time from signaling that the
participants were ready, to confirming their selected choice, was 10.9s.
Not all flaws were equally detectable, however. A Factorial ANOVA
found a significant effect of flaw type on accuracy F(2,58) = 4.7,
p = 0.013, as well flaw size in terms of number of affected points
(F(2,58) = 58, p < 0.001). Their interaction was also a significant
effect (F(4,116) = 6.3, p < 0.001).

In general, spikes were the easiest to detect, with an accuracy of
58.8% [54.4%,63.1%], followed by outliers at 48.6% [44.2%,53.0%],
with gaps being the hardest to detect at 38.6% [34.4%,42.8%] accuracy.
A post-hoc pairwise Bonferroni-corrected t-test showed that all three
flaw types were significantly different from each other. It was generally
the case that increasing the size of the flaw significantly increased its
detectability: a post-hoc pairwise Bonferroni-corrected t-test of the
interaction of flaw magnitude and flaw type on accuracy found that gap
and spike detection was significantly more accurate with flaw sizes of
20 and 15 versus those of size 10. However, the number of outliers did
not significantly affect their detectability. Fig. 8 shows these results
in more detail. In general, these results partially supported our first
hypothesis: Participants were better able to detect flaws as these
flaws were larger, with the exception of outliers.

5.3.3 Visualization Performance

Not all visualizations were equally useful for detecting flaws. A Facto-
rial ANOVA found a significant affect of visualization type on accuracy
(F(2,58) = 10.5, p < 0.001), as well as a significant interaction effect
between visualization type and flaw type (F(4,116) = 4.5, p = 0.002).

Across all conditions, density plots were the most accurate, 56.8%
[52.3%,61.2%], followed by dot plots, 48.3% [44.1%,52.5%], with
histograms being the least accurate, 40.9% [36.5%,45.3%]. A post-

hoc pairwise Bonferroni-corrected t-test found that all visualization
types were significantly different from each other.

Despite this ranking, our results partially support our second hypoth-
esis: no single visualization was significantly better for detecting
every type of data quality issue. A post-hoc pairwise Bonferroni-
corrected t-test of the interaction between visualization type and flaw
type found that density plots were significantly better than other charts
for outlier detection (64.3% [57.1%,71.6%] vs. 39.8% [32.1%,47.4%]
for histograms and 41.7% [34.4%,49.0%] for dot plots), and that his-
tograms were significantly worse than other charts for detecting gaps
(25.5% [18.7%,32.2%] vs. 43.5% [35.9%,51.1%] for density plots and
46.8% [39.0%,54.5%] for dot plots). All other charts were comparable
within flaw types.

5.3.4 Parameter Settings

Gap Detection

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Density Plot Histogram Dot Plot

0.0175 0.035 0.07

Kernel Bandwidth
28 14  7

Histogram Bins
0.0875 0.175 0.35

Mark Opacity

(a) Gap Detection by Visualization

Outlier Detection

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Density Plot Histogram Dot Plot

0.0175 0.035 0.07

Kernel Bandwidth
28 14  7

Histogram Bins
0.0875 0.175 0.35

Mark Opacity

(b) Outlier Detection by Visualization

Spike Detection

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Density Plot Histogram Dot Plot

0.0175 0.035 0.07

Kernel Bandwidth
28 14  7

Histogram Bins
0.0875 0.175 0.35

Mark Opacity

(c) Spike Detection by Visualization

Fig. 9: Performance at our flaw detection task across designs and their
parameters. Each rightmost column across designs represents a default
from Silverman’s Rule, Sturges’ Rule, and 1

2 VegaLite, respectively.
With the exception of the outlier detection task, deviating from these
defaults generally resulted in better performance. Confidence intervals
represent 95% bootstrapped C.I.s of the trimmed mean.

Accuracy at detecting flaws was dependent on the settings of the



design parameters of the visualizations. In the most extreme case,
doubling the amount of bins in a histogram from the 7 recommended
by Sturges’ rule to 14 resulted in a nearly 5-fold increase accuracy
at detecting gaps (from 7%, near chance, to 36%). Fig. 7 shows an
example of this extreme case. In that figure, the guilty visualization is
the right-most column, third from the top.

Our results only partially support our third hypothesis: liberal pa-
rameters often had higher accuracy than more conservative ones.
A Factorial ANOVA of accuracy found a significant interaction ef-
fect between the flaw type and the conservativeness of the parameter
setting (F(4,116) = 26, p < 0.001). We conducted a post-hoc pair-
wise Bonferroni-corrected t-test of the interaction between parameter
settings and flaw type. For spikes, we found that all three levels of pa-
rameter settings were significantly different from each other, with more
liberal settings outperforming more conservative settings. Whereas
for gaps, all three settings were not significantly different. For outlier
detection, the most conservative parameter setting significantly over-
performed the most liberal ones. An analysis of this result shows that it
is mostly due to density plots: since the outliers were sufficiently far
from the mode to not be “smoothed away” by large bandwidth kernels,
the increased kernel bandwidth had the effect of making the outliers
more prominent.

An analysis of our per-visualization results show that the aggregate
group differences were driven by several particularly beneficial or
harmful parameter settings, in keeping with our adversarial results
from §4: small bandwidths KDEs make spikes especially prominent,
as the large number of overlapping points in a small region create
a large visual spike that is not smoothed into the neighboring points.
Histograms with small numbers of bins make the detection of spikes and
gaps difficult, as the spike causes renormalization (as in Fig. 4), and the
bin containing the gap will contain many neighboring values, resulting
in a subtle visual change rather than a sudden drop-off in density.
Lastly, high-opacity dot plots make internal modes indistinguishable
from overplotted regions. Fig. 9 shows these results, pivoting on
detection type, task, and parameter setting.

6 DISCUSSION

Our results identify some potential concerns with the use of visualiza-
tions as sanity checks. Overall, it appears that the detection of data
flaws from visualizations is by no means reliable, or neatly disentangled
from differences caused by sampling error: even spikes, the flaw with
the highest overall detection rate, were correctly identified only 59%
of the time. Real world datasets, with more subtle data flaws, larger
sample sizes, and more complex sources of error, should induce even
more skepticism about the ability of standard visualizations to reliably
surface data flaws. We should expect a larger class of confusers and
hallucinators among the wider class of visualizations and flaw types.
Designers of visual analytics systems, especially those for EDA or data
cleaning, should conduct their own analyses of the AVD properties of
their visualizations to assess the robustness of competing designs.

Our results also suggest that there is no single visualization design, or
parameter setting, that will make all potential data quality issues equally
visible. While density plots were the most robust visualization we tested
(across all flaws, they were either the visualization with the highest
performance, or not significantly different from the visualization with
the highest performance), density plots also showed wide variability
in their performance based on their bandwidth. Disadvantageous or
adversarial setting of design parameters can erase the performance
benefits of any particular visualization design.

Lastly, our results suggest that, in many cases, more liberal settings
of things like histogram bin size and mark opacity will result in better
performance. In the following section, we speculate on the visual
impact of these features across each visualization type we tested, and
their implications for designing for sanity checking.

6.1 Density Plots
We were in general surprised by the relatively high performance of
density plots across conditions, as the specifics of their design is based
on a concept, KDE, that requires a reasonable amount of statistical

background to interpret. Their performance here indicates that they
may be justified for inclusion among the standard arsenal of distribution
visualization tools in visual analytics systems, despite their sensitivity
to their underlying parameters.

As discussed in prior work, there appears to be a significant cost
for oversmoothing in density plots with respect to detecting gaps and
modes. Oversmoothed modes are “blended” into the regular distribu-
tion. Oversmoothed gaps make the case of no data ambiguous from the
case less data, especially if they occur in regions with large amounts of
data on either side of the gap. Our results show a monotonic decrease
in performance for these tasks as bandwidths get larger.

However, we observed a positive benefit for large bandwidths in
outlier detection. On reflection, outliers are large numbers of points in
sparse regions: a large bandwidth would make these outliers “wider”
and more visually prominent. Large bandwidths also help disambiguate
the small number of extreme points that would occur due to sampling
error (which would be smoothed into the larger shape of the distribution)
from a cluster of systematically outlying points (which stick out).

Therefore, while we recommend that designers consider using den-
sity plots in wider applications, we suggest that they be mindful of the
data quality flaws they expect their analysts to encounter, and consider
that rules of thumb such as Silverman’s rule may be too conservative to
show much in the way of the internal structure of distributions.

6.2 Histograms
We were also surprised by the relatively poor performance of his-
tograms; in no condition were they significantly better than other vi-
sualization types for detecting flaws, and in one case (gap detection),
they were significantly worse than their competitors. Histograms are a
standard tool for visualizing distributions, and are the default per-field
visualization in commercial data prep tools such as Trifacta’s Wrangler
and Tableau Prep. Histograms do have some advantages in terms of
the scalability of their design (affording the visualization of arbitrary
numbers of data points in a constrained visual space with no potential
for overplotting), but our results indicate that they, in themselves, may
only be weak evidence for the presence or absence of a flaw in the data.

Expanding on existing results, we show that there are severe perfor-
mance costs to underestimating the number of histogram bins. If there
are too few bins, then missing data can be small enough to be drowned
out by dense neighbors. As with density plots, this underestimation
also causes an ambiguity between no data and less data, a signal that
can be confused with variability due to sampling error. Similarly, his-
tograms are often normalized with respect to their maximum observed
density. Therefore, extraneous modes that are too close to existing
modes can just force a renormalization of all the other bins, while leav-
ing the modal bin unchanged. This “renormalization bias” can obscure
important patterns in both univariate and spatial visualizations [14].
Large bins, however, can group all outliers into a single bin of locally
high density. These large outlying bins are more prominent than if
outliers cross multiples bins. They also reduce some of the ambiguity
in whether there are enough extreme points to indicate a data quality
issue, or if they are artifacts of sampling error.

In general, we do not recommend the use of Sturges’ rule for creating
sanity checking histograms [42]. Other simple rules of thumbs, such as
the Freedman-Diaconis rule [18], are more liberal (it would generate
13 bins for our idealized distribution, instead of the 7 of Sturges’ rule).
Even so, with extremely liberal bin settings, other visualization types
that do not discretely aggregate data are likely to expose a wider class
of data flaws than histograms.

6.3 Dot plots
We expected strong performance from dot plots which, under reason-
able settings, have direct and unambiguous visual signatures for each
one of our data flaws. For instance, modes appear as solid circles
surrounded by less opaque neighbors, and gaps appear as continuous
regions with no marks whatsover (see Fig. 5). We expected most
performance issues to stem from overplotting.

Unlike histogram binning, which has been studied for decades, work
on automatically setting the opacity of points in a scatterplots and dot



plots is relatively recent [33, 35]. As such, there are few heuristic rules
for setting mark opacity. Our results, while coarse, do not suggest
any particular local maximum of performance: most opacities, so long
as they are low enough to reduce the effects of overplotting, will still
afford many forms of sanity checking. Not just the opacity, but the size
of the marks, and the density of the data, will contribute to the severity
of overplotting.

The relative robustness of dot plots could be due to the fact that, for
feasibility reasons, our list of viable parameters for mark opacity began
relatively low (half of VegaLite’s default mark opacity of 0.7). We pi-
loted with different maximums (including 0.7 and 1.0), but encountered
floor effects, as most of the dot plots were very close to solid black lines
of overplotted marks. Therefore, we still recommend that designers
be mindful of dot plot opacity, and generally more liberal in setting
defaults than those of alternative analytics tools. Our results indicate
that, unlike the other visualization types where there were performance
benefits on both extremes of the parameter scale, data flaws are visible
even with very low mark opacity.

When employing dot plots for sanity checking purposes, we recom-
mend that designers, by default, employ some method of ameliorating
overplotting, either in terms of mark opacity, jittering of points, or
reduction of mark size. Constant opacity values, that do not take into
consideration the number of modality of points, may not be sufficient
measures to produce usable dot plots by default.

7 LIMITATIONS & FUTURE DIRECTIONS

7.1 Limitations
We explored a narrow and coarse range of design parameters in our
lineup study. It is not within the scope of this paper to generate full
models of the impact of design parameters (such as histogram bin size
or KDE bandwidth) on different flaw detection tasks. As noted in §2,
smarter strategies for automatically setting parameters may avoid some
confusers created by the default settings we studied. Our goal, however,
was not to derive new or test all possible strategies, but to examine how
design parameters are set in practice, and to explore the effects of these
settings on data sanity checking. We contend that analysts may not
be aware of the existence of more complex parameter-setting rules, or
may not feel the need to adjust the initial univariate plots. We hope
our work prompts designers of future visual analytics systems to think
more carefully about how these defaults are set, and how the system
can encourage user interaction with these initial plots.

We also limited the visualizations we tested to a small class of well-
known exemplars. The computation of KDE, for example, can borrow
any number of visualization techniques that have been evaluated in the
context of either probability distributions [25] or time series visualiza-
tion [19]. Again, we were focused on sanity checking visualizations
as they occur in common visual analytics systems. More complex
visualizations (such as Summary Box Plots [39]) may directly encode
features relevant for data quality, but at the cost of increased visual com-
plexity or training time. Designers should weigh these costs (and the
false positive and false negative costs of detecting potential data quality
issues) when determining whether or not to support more complex
initial views of distributions.

Our experimental task, by forcing participants to make a choice,
does not distinguish false positives (they selected a chart with no flaw,
but a visual distinction that is a mere result of sampling error) from
false negatives (they could not find any chart that appeared flawed, and
so guessed randomly). Therefore, in the language of AVD, our results
cannot distinguish between confusers and hallucinators. We intend to
disambiguate these scenarios in future work, but speculate that for data
sanity checking, false negatives may be more problematic (we want to
avoid using dirty data). EDA tools may therefore value the absence of
confusers more than the absence of hallucinators.

Lastly, we used naı̈ve participants with no particular stakes in, or
strong semantic connections with, the data. Statistical expertise, visual
literacy, or strong priors from the analytical domain, could greatly
improve performance at sanity checking. It remains an open research
question to quantify how semantic information impacts performance
at lower-level graphical perception tasks, and whether higher stakes

in decision-making encourages fundamentally different patterns of
information-seeking and verification. Similar, the impact of domain
knowledge or other semantic information on perceptions of data quality
is unexplored in this work. Further ethnographic work may illuminate
whether there are visual signatures that function as sanity checks in
specific data domains, or among more experienced data scientists.

7.2 Potential Solutions & Future Work
One solution to the issues raised in this paper is to integrate automatic
anomaly detection with visualization directly. Tools like Profiler [28]
use approaches from data mining to suggest potential data anomalies,
and then allow analysts to visually diagnose their source or assess their
severity. We recommend a further integration of anomaly detection
and visualization: anomaly detection might function as the visual ana-
lytics equivalent of “compiler warnings:” by automatically detecting
anomalies that are not readily visible in particular visualization types
(such as gaps in histograms), a system could prompt interaction or
other mixed-initiative solutions (such as a focus+context view inside a
particularly suspicious histogram bin). This visualizations+warnings
design could accelerate sanity checking when data quality issues will
be readily apparent, but encourage the analyst to slow down and inter-
act when issues are less prominent. Likewise, recommender systems
such as Voyager [51] could use automatic methods to explicitly guide
analysts to closely examine problematic fields in a dataset. We intend
to explore how to combine automated anomaly detection with visual
analytics, and how to communicate potential data quality issues to
analysts, including at stages downstream of sanity checking.

Another class of solutions is to employ hybrid or ensemble visualiza-
tions as the default view for data prep contexts. Bean plots [27] (with
low opacity interior strips) represent a potential ensemble design with
components that, in our study, afforded detectability across the full
range of the data flaws we explored. Likewise, hybrid visualizations
such as Wilkinson dot plots [50] or beeswarm plots [17], when the
dataset is small enough, could afford some of the benefits of both dot
plots (in that individual points can be visible) and density plots (in
that the overall shape of the distribution can be visible). We intend to
explore this space in more detail, and empirically test our supposition
that these designs can provide the additive benefits of their components.

Our work has concrete implications not just for designers using
standard visualizations in visual analytics contexts, but also for design-
ers creating and evaluating new visualization methods. We encourage
designers to not only test the robustness of their design parameters
in terms of the quality of their visualizations in normal scenarios, but
to specifically consider whether data quality concerns are easily dis-
coverable or detectable across the relevant parameter spaces. Ideally,
designers would build their new techniques defensively, such that im-
portant data quality concerns are difficult to ignore, even across a wide
(or perhaps adversarial) range of parameter settings.

7.3 Conclusion
In this work, we examine the capabilities of visualizations to act as
sanity checks: simple visualizations that are meant to be used to rapidly
confirm that a particular dimension of a dataset is relatively free from
flaws. The sanity checking process may be brief, and the analyst may
be discouraged from interacting with or otherwise altering the design
of these preliminary visualizations. In this setting, we have shown
that there is a wide class of visualizations that appear to plausibly
summarize data, but make flaws in the data difficult to detect.

ACKNOWLEDGMENTS

Scheidegger and Li’s work in this project was partially supported by
NSF award IIS-1513651 and the Arizona Board of Regents.

REFERENCES

[1] D3: histogram.js. https://github.com/d3/d3-array/blob/

master/src/histogram.js.
[2] R: bandwidth. https://stat.ethz.ch/R-manual/R-devel/

library/stats/html/bandwidth.html.

https://github.com/d3/d3-array/blob/master/src/histogram.js
https://github.com/d3/d3-array/blob/master/src/histogram.js
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html


[3] R: hist. http://stat.ethz.ch/R-manual/R-devel/library/

graphics/html/hist.html.
[4] Tableau help: Create bins from a continuous measure. https:

//onlinehelp.tableau.com/current/pro/desktop/en-us/

calculations_bins.html.
[5] Vega-lite: init.ts. https://github.com/vega/vega-lite/blob/

cebdffb20517947bd6dadb040ffe80f00d5bfcb2/src/compile/

mark/init.ts.
[6] F. Anscombe. Graphs in statistical analysis. The American Statistician,

27(1):17–21, 1973.
[7] R. Beecham, J. Dykes, W. Meulemans, A. Slingsby, C. Turkay, and

J. Wood. Map lineups: effects of spatial structure on graphical inference.
IEEE transactions on visualization and computer graphics, 23(1):391–400,
2017.

[8] S. Belia, F. Fidler, J. Williams, and G. Cumming. Researchers misunder-
stand confidence intervals and standard error bars. Psychological methods,
10(4):389, 2005.

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12):2301–2309,
2011.

[10] W. S. Cleveland and R. McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal
of the American statistical association, 79(387):531–554, 1984.

[11] M. Correll and M. Gleicher. Error bars considered harmful: Exploring
alternate encodings for mean and error. IEEE transactions on visualization
and computer graphics, 20(12):2142–2151, 2014.

[12] M. Correll and M. Gleicher. The semantics of sketch: Flexibility in
visual query systems for time series data. In Visual Analytics Science and
Technology (VAST), 2016 IEEE Conference on, pp. 131–140. IEEE, 2016.

[13] M. Correll and J. Heer. Black hat visualization. In Workshop on Dealing
with Cognitive Biases in Visualisations (DECISIVe), IEEE VIS, 2017.

[14] M. Correll and J. Heer. Surprise! Bayesian weighting for de-biasing
thematic maps. IEEE transactions on visualization and computer graphics,
23(1):651–660, 2017.
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