DimReader: Axis lines that explain non-linear projections
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Fig. 1. DimReader explains non-linear dimensionality reduction methods by illustrating the effects of user-designed perturbations of the
input dataset. It provides an answer to the question “if the input data had been slightly different in a particular way, how would the plot
have changed?”. In the case of traditional scatterplots, it recovers exactly the axis lines being displayed. In the case of non-linear
methods, DimReader recovers generalized axes, which indicate how dimensions of interest behave. Examples of these axes are shown
in (A) for the x, y, and z dimensions of the S Curve (an S shaped 3 dimensional manifold). These axes also allow for the comparison of
different projection methods. This is exemplified in (B), where the petal length axis of the iris dataset is shown for three projections.
Petal length is well behaved in t-SNE but not in the other projections . We also provide a technique for discovering good perturbations
of the input (perturbations that change the projection the most). The top of (C) shows an example of a discovered perturbation. In
context, shown at the bottom of (C), this perturbation shows us that t-SNE is sensitive to flat shoes v.s. heels. The perturbation wants
to change the original image from a heel to a flat by filling in the arch.

Abstract—Non-linear dimensionality reduction (NDR) methods such as LLE and t-SNE are popular with visualization researchers
and experienced data analysts, but present serious problems of interpretation. In this paper, we present DimReader, a technique
that recovers readable axes from such techniques. DimReader is based on analyzing infinitesimal perturbations of the dataset with
respect to variables of interest. The perturbations define exactly how we want to change each point in the original dataset and we
measure the effect that these changes have on the projection. The recovered axes are in direct analogy with the axis lines (grid lines)
of traditional scatterplots. We also present methods for discovering perturbations on the input data that change the projection the most.
The calculation of the perturbations is efficient and easily integrated into programs written in modern programming languages. We
present results of DimReader on a variety of NDR methods and datasets both synthetic and real-life, and show how it can be used to
compare different NDR methods. Finally, we discuss limitations of our proposal and situations where further research is needed.

Index Terms—Non-linear dimensionality reduction, auto-differentiation
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1 INTRODUCTION

One of the central promises of data visualization is that its techniques
will help users and analysts make sense of large, complicated datasets.
Data visualization, and specifically techniques in dimensionality reduc-
tion, are routinely used in practice during exploratory data analysis of
challenging datasets.

Classical linear methods such as Principal Components Analysis
have existed for more than a century, but recent advances from non-
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linear methods that started with Tenenbaum et al’s Isomap [47] have
revolutionized the practice of dimensionality reduction. The potential
to understand high dimensional data via low-dimensional representa-
tions is clearly attractive. But just what, exactly, are these non-linear
dimensionality reduction (NDR) methods showing? This is the funda-
mental question that drives the work we report here. Data scientists and
analysts use NDR’s in an attempt to create a nice 2-dimensional rep-
resentations for their data in hopes of learning some of the underlying
structure of the data. The NDR’s often result in nice pictures but give
no indication why the NDR placed things the way it did and no context
to the input.

Consider van der Maaten and Hinton’s t-SNE, arguably the most
powerful and currently most popular method for NDR [35]. Although
practical experience attests to t-SNE’s power to uncover cluster relation-
ships in very challenging datasets, its sensitivity to the hyper-parameters
is remarkable [52]. If small changes in parameter settings produce plots
that are fundamentally different, we must ask ourselves: are some
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Fig. 2. In traditional scatterplots, the grid lines (or axes lines) exist to explain what the plot is showing. Equivalently, they capture infinitesimal
perturbations of the dataset in specific directions, because they are always perpendicular to the directions of movement. DimReader extends the
same principle to non-linear dimensionality reduction (NDR) methods, and recovers generalized axis lines, which help explain NDR methods in terms

of interpretable data transformations.

results generated by NDR methods just bad? Do different parameter
settings show different features of the data? More importantly, how do
we even answer these questions?

In this work, we design data transformations, which induce transfor-
mations on the visualization itself, elucidating the behavior of the NDR
method (this is the perspective introduced by Kindlmann and Scheideg-
ger’s algebraic design process [31]). Specifically, we use infinitesimal
perturbations — small changes of the data in its original space — to
produce infinitesimal changes of the visualization. We then show how
these visualization changes can be interpreted as producing effective,
non-linear axis legends. In this way, our non-linear axes explain the
NDR plot in the same way that axis legends explain the positional en-
coding in scatterplots. As a result, analysts can understand and evaluate
dimensionality reduction plots similarly to how they evaluate linear
methods. In fact, we show in Section 3 that our methods exactly recov-
ers the gridlines of typical scatterplots. DimReader is quite general, and
can be applied to many different NDR techniques, only requiring access
to the source code of its implementation. Specifically, we use a method
known as automatic differentiation to produce the necessary gradients
for calculating the infinitesimal changes of the visualization [26]. An
overview of the process is given in Figure 2.

In summary, our contributions are:

* A general framework to explain plots generated by non-linear
dimensionality reduction, using infinitesimal perturbations

¢ A practical implementation of the framework using automatic
differentiation

* A method for discovering good perturbations for a given dataset,
useful when the input lacks easily interpretable dimensions (and
hence, lacks easily-defined perturbations)

* An experimental study of the effectiveness and efficiency of Dim-
Reader using three well-known NDR methods: Isomap [47],
LLE [39], and t-SNE [35].

2 RELATED WORK

Projection methods have received a considerable amount of attention
in information visualization. In this section, we review the work that is
most directly related to our research, but cannot hope to cover the en-
tirety of the field. For a comprehensive view on multidimensional scal-
ing and dimensionality reduction, we recommend Born and Gronen’s
textbook [5], and Fodor’s survey [23].

Projection methods in information visualization The obser-
vation that pairwise similarities (or distances) can be converted into
low-dimensional representations by a mathematical formulation comes
from Torgerson and his now-classical theory of multidimensional scal-
ing [48]. In information visualization, force-directed methods have

long been used as a dimensionality reduction technique, from fully-
automatic methods [12,28, 36], to methods which take some amount of
interaction, either through placement of exemplar points [21,30,37] or
through direct interaction with projection parameters [29]. Although
interactive methods offer a better hope for understandability because
the perturbation analysis we discuss can happen “in the analyst’s head”
during interaction, we argue that the visual encoding these techniques
provide can still be unclear. The technique we propose here can be
applied to essentially all of the methods above, and offers an attractive
complement to both automated and interactive projection methods.

Perturbation Analysis for data science The idea of understand-
ing a system by examining its behavior under perturbations is well-
established in the engineering and statistics literature. In the 1970’s,
Cook introduced the notion we now know as Cook’s distance [17],
which measures the influence of a point on the parameters of linear
regression models. In the context of visualization, Bergner et al. point
to sensitivity analysis as one of the requirements in understanding com-
puter simulations [4]. In this paper, we use perturbation analysis as a
central tool to recover readable axes from NDR methods, in a sense
incorporating sensitivity analyses into familiar visual metaphors.

Automatic Differentiation Perturbation analysis is clearly an im-
portant tool for understanding systems, but the issue of how to im-
plement it in existing computer systems is crucial. Automatic differ-
entiation (which we explain in detail in Section 3) provides a way to
compute derivatives of arbitrary functions in a computer program, pro-
vided access to the source code (or similar structural information about
the computation) is available [26]. To the best of our knowledge, the
most mature software library employing automatic differentiation is
Ceres, written in C++ and employing template metaprogramming [1].
DimReader is implemented in Python for simplicity and terseness, but
could easily be redesigned in C++.

Guidance and validation of projection results One of the issues
with NDR is that it’s hard to know what a plot is actually showing [50].
This has resulted in a variety of papers which offer guidance and design
principles on how to interpret projections, based on a combination of
real-world experience, synthetic examples, and theoretical arguments [9,
33,40,42,43]. This work is essential to the current practice, we argue,
because current NDR methods do not offer explanations of their own
results — there are much fewer research papers offering guidance for
understanding and interpreting traditional scatterplots. As we show
in Section 4, our technique provides a way for a projection method to
explain itself. Although analyst guidance and validation will always be
a part of a well-designed analysis infrastructure, our technique could
mitigate some of the problems that have been observed in deployed
systems, where projection methods are ultimately discarded because of
readability issues [7,27].
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Fig. 3. An overview of DimReader. For a given NDR method, we 1) compute its position using the original implementation; 2) compute perturbation
directions for the input points with the transformed version of the implementation which uses dual numbers (We discuss how to choose appropriate
perturbations in Section 3.2.2); 3) compute the scalar field whose gradient best matches the perturbation vectors in a least-squares sense; and
finally 4) compute its isocontours. Section 3 explains these steps in detail.

Augmented visual representations There is another avenue of
attack on the readability problem of NDR methods. Often, researchers
will augment the results of the projections with visual diagnostics that
pinpoint potential problems. Seifert et al. augment the projection by
showing how the projection’s stress (roughly the discrepancy between
source-space distances and target-space distances) varies spatially in
the NDR plot [44]. In [3] and [34], the projection is augmented
to show uncertainty measures and distortions in NDR’s respectively.
Cutura et. al’s VisCoDeR allows users to compare and explore different
dimensionality reductions by augmenting the projection to allow users
to explore how dimensions are mapped in the dimensionality reduction
results as well as the high-dimensional proximity of projected points
to a selected point in the projection [19]. Stahnke and co-authors
described methods to probe a projection, through carefully designed
user interactions and custom visual encodings [46]. Our method for
extracting effective axes can be seen as a way to allow any NDR method
to augment itself with metaphors that have a well-defined analogy in
the linear case, as can be seen in Section 4, and Figure 7 specifically.
In Section 4.3, we provide a more direct comparison to some of the
methods used in Stahnke et al.’s work.

Explainable visualizations Every plot assumes an audience that
can read it, and visualization literacy remains an active area of re-
search [6]. Often, novel metaphors are necessary because of the data
or task complexity [8]. We argue that generalizing well-established
techniques such as axis legends to NDR can help explain those tech-
niques. Gleicher’s Explainers take user interaction to design specific
projections for input data [24]. In contrast, our technique extracts axes
inherent in the non-linear projections. Coimbra et al. explain projec-
tions through enhanced biplots [16]. Similar to our technique, they
show axes for the dimensions of the input data in the low dimensional
plot. Because of the non-linearity of these dimensionality reductions,
the biplot axis will change based on the projected position of the sam-
pled point whereas our technique captures the axis lines for the entire
projection. A similar approach is proposed by Cavallo and Demiralp in
Prolines, a technique for interacting with data points in both low- and
high-dimensional spaces [11]. Prolines allow efficient, direct manipu-
lation of the output points, but require access to efficient forward and
backward projection, limits its applicability. Flow-based scatterplots
[13] and Generalized Sensitivity Scatterplots [14] show the sensitivity
of a dimension in a scatterplot with respect to other dimensions in the
dataset. Similar to our technique, these methods use derivatives to
determine the sensitivities. Our technique differs by showing sensitivity
of the projection with respect to the original data rather than sensitivity
between dimensions in the original data. The data context map from
Cheng et. al. provides a way to simultaneously look at clusters of data
points and the location of the most dominant values of each attribute
with the assumption that the attribute values always decrease as points
move farther away from it. [15]. Our technique differs by showing the
behavior of a dimension throughout the entire projection, not just the
location of the most dominant value.

3 TECHNIQUE

Our technique is broken into two parts: (1) explaining an NDR method
using a known perturbation (DimReader ) and (2) searching for good
perturbations when there is no known perturbation (after which Dim-
Reader can be applied).

In principle, all that DimReader requires is the ability to compute
derivatives of the projection coordinates with respect to each of the
input points. For extremely simple techniques (such as scatterplots
and other fixed linear projections), these derivatives can easily be eval-
uated in closed form. However, more sophisticated methods such as
Isomap, LLE, and t-SNE involve long computation chains, for which
the evaluation of the derivative would introduce significant develop-
ment overhead. Instead of trying to solve them in closed form, we take
central advantage of automatic differentiation. [26]. As we describe
next, automatic differentiation allows us to calculate the derivative of a
projection with minimal implementation effort.

3.1 Automatic Differentiation

In this paper, we use a particular form of automatic differentiation
known as forward-mode automatic differentiation. In what follows, we
will refer to it as “autodiff”.

In forward-mode autodiff, the program’s derivative with respect to a
specified variable is computed alongside the function value, by using
an extended number system. In this system, we replace numbers in the
program with dual numbers that have the form x = (a,b) where a holds
the original value of the number and b carries the derivative of x with
respect to our variable of interest. When we initialize a variable y, we
set b to one if that is the variable we want to differentiate with respect to
(since dy/dy = 1) and zero otherwise. When the projection is run with
dual numbers in place of regular numbers, in addition to calculating the
projected points, it calculates their derivatives through applications of
the chain rule and derivative rules (product rule, quotient rule, etc.).

Note that autodiff is always performed at a specific value, and with
respect to a specific variable. It produces two numbers as a result: the
function value and the partial derivative with respect to the chosen
variable. This has two important consequences for our design. First,
we need to decide over exactly which variables we will take derivatives.
Second, we need to execute the program many times in order to evaluate
many different derivatives. This will become important in Section 4.4.

3.2 DimReader Process

3.2.1 Overview of the process

To apply DimReader to an NDR method, there are four steps. Each of
these steps is discussed in a subsection below.

* A user chooses a perturbation of interest, which defines an in-
finitesimal change for each data point (possibly in different direc-
tions).

* The NDR method is executed many times using dual numbers,
from which we obtain the perturbation vectors, one for each input
point.



points = copy(inputPoints)
points[i] = perturb(points[i], perturbation)
projection = project(points) project uses autodiff
dx, dy = projection.derivativel[i]
projectionVectors[i] = vector(dx, dy)

return projectionVectors

counts = zero_array (numP
projectionVectors = zero_matrix(numPoints, 2)
while any(counts < 1):
points = copy(inputPoints)
for i in range(numPoints):
if random() < 0.5: # perturb each point with probability 0.5
perturbed[i] = true
points[i] = perturb(inputPoints[i], perturbation)
projection = project(points) uses autod.
for i in range(numPoints):
if perturbed[i]: # only store vectors of |
dx, dy = projection.derivativel[i]
projectionVectors[i] += vector(dx, dy)
counts[i] += 1
for i in range(numPoints): # average all perti
projectionVectors[i] /= counts[i]
return projectionVectors

uses autodiff

Fig. 4. Although a basic implementation of DimReader is easy to under-
stand (top), it only extracts one perturbation vector at a time. A more
efficient implementation (bottom) extracts half of the perturbation vectors
from the input at once. To remove possible correlations between the
outputs, we choose which points to include at random, and iterate until all
points have been included. The expected time in this case is logarithmic
on the size of the input point dataset.

* From the perturbation vectors, a scalar field whose gradient
matches the perturbation vectors is computed.

» The isolines of this scalar field, which are perpendicular to the
gradient, are extracted using Marching Squares. They form the
effective axes.

3.2.2 Choosing which perturbation to use

The first step of our method involves a choice of the perturbation of the
dataset. A perturbation is a small change to a specific dimension (or
set of dimensions) for each data point in the original, high-dimensional
space. Thus, the choice of perturbation corresponds, effectively, to
an analyst answering the following question: “if each data point were
slightly different in this specific way, what would happen to the visu-
alization?” In order to recover different features of the NDR method
and its effect on the dataset of interest, different perturbations can be
designed. In the following, we discuss choosing a perturbation in a
dataset with interpretable dimensions. We discuss discovering pertur-
bations for other datasets in Section 3.4. In automatic differentiation,
perturbations are represented by the derivative part of the dual number
for the original data points. The perturbation of a data point with d
dimensions has the form of a unit vector with d elements where the
value of each element specifies how much the corresponding dimension
is perturbed relative to the rest of the dimensions.

Datasets with interpretable dimensions Some datasets have
interpretable columns. Take the iris dataset, for example, which is used
in Figure 2. In that case, a perturbation that changes each of the input
points in the direction of a given dimension will reconstruct, for an
NDR method, curved axes lines that correspond, roughly to the linear
grid lines in scatterplots. Concretely speaking, we evaluate each input
point p; as (p;, (0,---,0,1,0,---,0)), where the value 1 is positioned
at the dimension of interest.

3.2.3 Extracting derivatives from NDR methods

In this section, we describe two techniques used in DimReader to
extract the perturbation vectors ,the changes to the projected coordi-
nates resulting from a perturbation on the input, for a given projection.
The first technique is simple, straightforward, and provides a good
intuition for the overall strategy. Unfortunately, this technique requires
as many executions of the NDR method as there are input points in the
dataset, which often means the overall performance can suffer. The
second technique, on the other hand, only requires as many runs as the
logarithm of the number of input points. We give pseudo-code for the
two approaches in Figure 4.

(B) Values of Perturbations on
All Other Projected Points

(A) Values of Perturbations on
Corresponding Projected Point
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Fig. 5. (A) shows the effect sizes of perturbing point p; on its correspond-
ing projected point, v;. DimReader uses these values in its computations:
note their large magnitude (values outside of the displayed range are
clamped at -.5 and .5). (B) shows the effects sizes of perturbing point p;
on all projected points aside from v;. DimReader assumes these values
are zero and discards them: note their small magnitude.

DimReader needs access to the source code for the NDR method at
this step so the method can be executed with dual numbers. In principle,
the source code can be executed without any modifications aside from
converting the input points into dual numbers. In practice, some issues
arise because of efficiency concerns and library limitations. We discuss
these issues at length in Section 4.

Perturbing one point at a time  After a perturbation is chosen,
the NDR technique is executed with automatic differentiation for every
point in the dataset. On execution i, the point p; is perturbed (that
is, we replace p; with (p;, p;) where p; is the specified perturbation
of p;). The NDR technique will return the projection coordinates, v,
for all points, along with the derivative of the projection coordinates
with respect to the perturbation of p;, j—;i. We use the derivative of
each coordinate in the reduced point v; as the vector that describes the
change in the coordinate, and discard the rest of the information of the
run. The pseudocode for this is given on the top half of Figure 4.

Perturbing many points at a time The method described above is
inefficient, requiring O(n) evaluations of the NDR method. A naive at-
tempt to optimize the method would evaluate the projection derivatives
with respect to all of the points (and hence all of the per-point pertur-
bations) at once, and only run the autodiff version of the code once.
Unfortunately, this does not work for many perturbations, because most
DR methods are invariant to dataset translations. The perturbation of
only one input point at a time offers interesting insight into the NDR
method, but if we move all of the points at once in the same direction,
NDR methods such as Isomap, LLE, and t-SNE will produce exactly
the same projection (the perturbation vectors will be all zeros).

We solve this problem by adding a small amount of randomization.
Instead of perturbing one point at a time, we can choose half of the
points at random to perturb, while the other half does not change. We
then store the projection vectors for the points we chose to perturb,
and repeat the process until we have actually perturbed all of the input
points. After each round, we expect to halve the number of unperturbed
points, which gives an expected number of repeated runs which is
logarithmic on the number of input points. The pseudocode for this is
given on the bottom half of Figure 4. We found that the DimReader
plots produced by perturbing many points at a time are indistinguishable
from the plots produced by perturbing one point at a time.

Ignoring changes in unperturbed points In some cases, per-
turbing a point p; has an effect on points other than its corresponding
projected point v;. However, the effects on other points are small
enough that we can effectively ignore them. In Figure 5, we show
that the effect of perturbing each point p; on the other points, v; (i # j)
tends to be near zero and very rarely is significant. We show this result
for the iris dataset, but have found it to be true in general for t-SNE in
all datasets we checked. Intuitively, we expect a good dimensionality
reduction to be robust to a small change in a single point, and thus the
residual effect on the rest of the points to be insignificant.

3.2.4 Reconstructing the direction field

Once we have the projected points and their derivatives (that is, the
perturbation vectors), we need to reconstruct the direction field, in
order to extract perpendicular lines. We achieve this by computing a



Fig. 6. An illustration of the process to recover generalized axes. Given
the point positions and perturbation vectors (a), we construct a triangular
mesh and interpret each vector as a linear constraint on the gradient of
a function (b), which gives values on each of the vertices (c). From these
values, we can extract lines perpendicular to the perturbation vectors
using marching squares.

scalar field whose gradient best matches the vectors. We use a simple
least-squares reconstruction technique, adapted from Ferreira et al.’s
vector-field clustering work [22], which we illustrate in Figure 6. We
first decompose the output plane in a rectangular grid, and split each
grid square into two triangles, giving a triangular mesh of the output
space. The resolution of this grid needs to be decided ahead of time,
and we use a 10x10 grid in our examples for this paper. We model a
scalar field on the output plane as a piecewise-linear function on the
grid values. Each point and its perturbation vector is interpreted as
a linear constraint on the vertices of its corresponding triangle. To
find the best-fitting scalar field, we solve it in a least-squares sense,
regularizing the system to ensure a unique solution [22].

3.2.5 Extracting perpendicular lines

The final step is quite simple. With the scalar field expressed as values
in a triangular mesh, we can use marching squares to extract isocon-
tours [2]. By construction, the gradient of this scalar field matches
the perturbations. Since isolines are perpendicular to a function’s gra-
dient [41], the resulting curves will tend to be perpendicular to the
perturbations. As we show in Figure 2, these isoline can be thought of
as generalized axes lines.

3.3

In our plots, the projected points would move perpendicular to the
isolines nearest to them if the input were perturbed in the specified way.
An increase in the corresponding dimension would move the point from
light to dark. The relative density of the isocontours can be interpreted
similarly to the behavior in scalar fields. Narrowly-spaced isocontours
indicate a high sensitivity to changes in the independent variable, (in
our case, projection coordinates). Widely-spaced isocontours indicate
low spatial sensitivity: a change in the projection coordinates is not
expected to change the outcome variable by much. Curved isolines
indicate that the same perturbation has a different effect on different
points. Isolines that fan out (go from narrowly-spaced to widely-spaced
as in Figure 8) indicate that the sensitivity of the plot is changing from
more sensitive on one side to less sensitive on the other.

Interpreting DimReader Plots

3.4 Discovering Good Perturbations

We may not always know good perturbations for a dataset, such as the
MNIST digits where it is not clear what the best way to perturb each
image would be. To help solve this problem, we offer two methods to
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Fig. 7. Extracting axes from the Iris dataset with four projections: PCA,
Isomap, LLE, and t-SNE. We only show petal length and sepal width
because petal width is extremely similar to petal length and sepal length
is very similar to sepal width. We discuss how to interpret these plots in
Section 4.1

recover good perturbations. We define good perturbations as perturba-
tions on the input that change the projection the most under the given
constraints. Both of the methods require that we have a tangent map,
M, for the projection. The tangent map allows for efficient calculation
of the perturbation vector, 7, for a given projection, without running
the projection itself. Given a perturbation on the input p, M - p results
in the perturbation vector v, i.e. v = dv/dp where v is the projected
coordinates. The vector p consists of the perturbation of each input
point concatenated into a single vector (end to end) and the perturbation
vector ¥ consists of the perturbation vector v; of each projected point
(vi) concatenated into a single vector. A single column of M can be
recovered by a perturbation vector that has a single entry of 1 and the
rest zeros (i.e. perturbing a single dimension of a single point). By
doing this for each dimension of every point, the entire tangent map
can be recovered.

One observation about the tangent map is that the values we need
for calculating the perturbation vectors lie in k x d blocks along the
diagonal, where k is the dimension of the projection (typically 2) and d
is the dimension of the input data. Because we ignore the effect a given
perturbation on all other points (as discussed in 3.2.2), we set the rest
of the matrix to zero. We exploit the block structure of the tangent map
in both of our methods for finding the best perturbation.

3.4.1

The first method for recovering the best perturbation is to find the single
perturbation that when applied to all points changes the projection the
most. The formulation for this method is:

argmaxZHB,'VH2 st [|i?]| =1
veR?

Perturb all points in the same direction

where B; is the block on the diagonal of M for point i. This
can be rewritten as Y, 7/ BB+ A(#'v —1). To find the maxi-
mum, we take the derivative with respect to v and set it to zero:
% Y7 BIBiv+A(¥5—1) = Y. 2BT B;v — 129 = 0. The best pertur-
bation vector is the eigenvector of the matrix Y ; BiTB,- with the largest
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Fig. 8. The best perturbation for the iris dataset. The left plot is the Dim-
Reader plot for this perturbation. In the two plots on the right, the color
of each point shows how much the point is perturbed for the specified
dimension. We see that the sepal width and sepal length are perturbed
more in the Red cluster (the Setosa cluster) than the petal dimensions
which means that, for this cluster, the projection is sensitive to changes
in the Sepal dimensions. The perturbations for the points in the other
cluster are insignificant. This tells us that perturbing only the Setosa
points will change the projection the most.

eigenvalue. This gives us a single perturbation, v, that when applied
to all points maximizes the change in the projection. v is constrained
to have unit length to prevent the method from choosing an arbitrarily
large perturbation.

3.4.2 Perturb each point individually

The second method for recovering the best perturbation is to find differ-
ent perturbations for each point that collectively change the projection
the most constrained so that points that are projected to similar places
have similar perturbations. The formulation is as follows:

argmaxZHB,-ﬁin f)LZZHﬁ,-fﬁszS(i,j) s.t |\\72|| =1
J

veERE i

where B; is the block on the diagonal for point i, V; is the perturbation
for the point i, A is a free parameter for how much smoothing we want,
and S(i, j) is the similarity between the projection of points i and j, p;
and p;. This similarity is defined as S(i, j) = e lIPi=pilP/o* 525 a
free parameter set by the user that determines how close points have to
be in the projection to be considered similar. We can rewrite the above
equation as follows:

argmax Y v;BI Biv;— A Y Y (5 — 7,5 —9,)S(i,j) st [P =1
J

veRd i

We observe that Y, ¥ ; (7; — ¥, % — 7;)S(i, j) takes form similar to a
Laplacian matrix, Ly multiplied by the entire perturbation vector v (the
concatenation of all of the individual perturbations, ;) on both sides:
!l Lev. Ly differs from a standard Laplacian matrix in that rather than
having diagonal values ¥ ;.; S(i, j) and off diagonal values —S(i, f), it
has diagonal values I * Y ;+; S(i, j) and off diagonal values I x —S(i, j)
where / is d x d identity matrix.

Furthermore, the equation can be rewritten in terms of the whole
matrix, M, and the entire perturbation vector, v giving us the following
equation which incorporates the constraint on the length of ¥:

argmax MM — A9 Lo — i v— 1
veR

Taking the derivative with respect to v and setting it to zero, we get

T (MTM —ALg) — A5 =0

The entire perturbation vector, v, is the eigenvector of the matrix
MTM — )L with the largest eigenvalue.

Choosing A and o. © controls the width of a gaussian centered
on each point. Examining the results of the projection itself gives some
information about plausible values for o. For example, points outside
further than three standard deviations from each other are essentially
treated independently, but at the same time, we don’t want a ¢ that
creates a gaussian which covers the entire projection. For choosing A,
we should be looking at the resulting perturbations. If a single point is

heavily dominating the perturbation (i.e. it moves much more than the
rest of the points) then A is likely too small. In contrast, if all points
are perturbed in almost exactly the same way, this is an indication that
A may be too large.

4 IMPLEMENTATION AND EXPERIMENTS

In this section, we discuss the implementation of our techniques along
with a suite of experiments designed to explore the capabilities, perfor-
mance, and limitations of DimReader. We will show how DimReader
directly addresses the following gaps identified in Sedlmair et al.’s in-
terview study about gaps between theory and practice in dimensionality
reduction (DR) [42]. These include the interpretation gap: “what do
the results mean?”’; guidance gap, “what algorithm to use?”, and the
non-linear unmapping gap: ‘“how do projection dimensions relate to
input dimensions?”.

Our current prototype for DimReader is implemented in Python and
numpy [51]. Our t-SNE implementation is closely based on van der
Maaten’s Python code [49], while the LLE and Isomap implementa-
tions are from-scratch. The entire method takes about 3,500 lines of
Python, including implementations of Marching Squares, the classes
for autodiff, and the linear solvers described below.

4.1 DimReader

In the following we look at a well known dataset, the iris dataset, with
known perturbations, and simple projection algorithms, in order to
better understand the behavior of the technique [32].

4.1.1 Linear projections

We start with showing results of linear projections as a basic sanity
check on the behavior of DimReader. Figure 7 shows a typical example
of the axes reconstructed by DimReader when using linear projections.
Since linear projections can be exactly represented by a matrix multi-
plication, the derivatives of input points position with respect to one
direction will always be constant vectors. As a result, the reconstructed
scalar field is almost (except for the influence of the regularization
terms) a linear ramp, and so the contour lines are evenly spaced and
parallel, which indicate that changes in the input variable will behave
identically across the entire field. Despite their limited power, this
property is one of the main advantages of linear projections.

4.1.2

Isomap was one of the first NDR techniques to recover curved man-
ifolds well in practice [47]. Isomap builds a weighted graph which
approximates the manifold, where edges have weight equal to the
distance between points, and each point has edges to its k nearest
neighbors (k is specified by the user). The global distance between
two points is defined to be the shortest-path metric on the graph. The
low-dimensional projection is constructed from the shortest-path metric
using classical MDS [5].

We implemented Isomap not only because of its historical signifi-
cance and relatively high-quality results, but also because it highlights
an interesting property of automatic differentiation: it works over code
bases that we tend to not think of as differentiable. Specifically, the
operations in Dijkstra’s algorithm for shortest paths are all well defined
for dual numbers, and so we naturally can extract the sensitivity of
shortest-path distances with respect to changes in the input points [18].

Isomap

Interaction with numerical linear algebra routines The final
step of Isomap is Classical MDS, and this presents unique chal-
lenges for our autodiff implementation based on operator overloading.
Specifically, Classical MDS requires the computation of eigenvec-
tors, and since Python libraries for numerical linear algebra are imple-
mented through high-performance libraries like Lapack, the operator-
overloading functionality is not present. To solve this issue, we imple-
ment the eigenvalue computation through power iterations [25], since
matrix-vector multiplication of dual numbers has efficient dual-number
implementations in terms of matrices of values and € terms.



Fig. 9. An overview of perturbations for points in the(A) MNIST digits
and (B) MNIST fashion. There is structure in the perturbations that our
technique discovers. They often resemble their true digit (or clothing
article) but with some variation. Darker areas are perturbed more than
lighter areas.

Isomap Experiments  Because Isomap uses classical MDS (which
is essentially a linear projection), we should expect that, to some degree,
Isomap would behave much like linear projections. This is indeed the
case with simpler datasets, such as the Iris dataset, shown in Figure 7.
However, there are some interesting differences. Consider the gener-
alized axis for the “sepal width” variable which DimReader recovers.
Even though the point positions generated by Isomap are quite similar
to that of PCA, the sensitivity of the projection differs dramatically
from the cluster of Setosa samples to that of Virginica and Versicolor
samples. Even more interestingly, it seems that the sensitivity is caused
by only some of the Setosa samples. This differentiation is not present
in the linear projection, and would not be clear from the Isomap plot
alone. In this example, DimReader helps overcome Sedlmair’s inter-
pretation gap by providing an explanation for why Isomap spread the
points in the Setosa cluster (Isomap is sensitive to differences in the
Sepal Width in this cluster) that would otherwise be unknown.

4.1.3 Locally Linear Embedding

The next algorithm we highlight is Roweis and Saul’s Locally Linear
Embedding [39] (LLE). Like Isomap, LLE uses a nearest-neighbor
graph to recover a global view of the dataset. LLE computes edge
weights for the nearest neighbor graph, such that each vertex can be
best reconstructed by a linear combination of its neighbors using those
weights. On a second step, the projection coordinates are recovered by
finding positions on the plane that best respect the weights.

Interaction with numerical linear algebra routines  Similarly to
Isomap, our autodiff implementation of LLE involves a small degree
of adaptation. In the case of Isomap, we required the computation
of the largest eigenvalues of a matrix. In the case of LLE, we need
to compute the smallest non-zero eigenvalues. Our implementation
uses inverse power iteration [25]. Inverse power iteration, in turn,
requires a linear system solver, which presents similar issues for dual
number implementations. Our solution is to implement a black-box
linear system solver using conjugate gradients [45].

LLE Experiments Locally Linear Embedding is a popular method
due to its performance [39], but is known to produce distorted projec-
tions [20]. In this section, we illustrate how DimReader might help
pinpoint such problems. Consider the projection of the iris dataset
in Figure 7. Note that neither of the recovered axes quite cross the
projection perpendicularly on the left side of the arc (the Versicolor and
Virginica cluster): no direction of perturbation on the input moves the
points diagonally along that cluster. This suggests that the shape of the
cluster is an artifact of the projection method. Compare this with the
Isomap projection in Figure 7: Isomap has perturbations which cross
each of the clusters perpendicularly (Sepal Width for Setosa and Sepal
Length for Versicolor and Virginica). Thus, Isomap is more faithful to
the underlying data than LLE. This is evidence that DimReader helps

bridge Sedlmair et. al’s guidance gap [42], giving an indication for
which NDR algorithm performs better for this data.

4.1.4 tSNE

t-SNE is among the most powerful techniques for dimensionality re-
duction, and also one of the hardest to interpret appropriately [35,52].
As such, it is a natural target for DimReader. In addition, t-SNE is
significantly different from Isomap and LLE in both formulation and
implementation. This provides us with an opportunity to explore practi-
cal issues of using DimReader to explain its results.

We highlight two separate issues to discuss: the presence of multiple
local minima, and its formulation in terms of the gradient of an energy
function. While the first issue presents challenges for implementations
that depend on repeated executions, the second issue allows us to
achieve a significant speedup.

Multiple minima The energy function that t-SNE minimizes has
more than one local minimum. This means that any source of random-
ness in the implementation will cause multiple runs to possibly diverge,
presenting a challenge for our approach. Most implementations of
t-SNE require an initial guess for the projection, and we take central
advantage of this. Specifically, in our first execution of t-SNE we use a
random initial guess and regular floating-point numbers to calculate a
local minimum that is then used as the initial guess for subsequent runs.
In the initial run we also capture variables that serve as parameters for
subsequent runs to ensure that they reach the same local minimum.

Gradient descent t-SNE is implemented as an explicit gradi-
ent descent formulation through an additive update of the parameters.
Specifically, the main loop of t-SNE is roughly as follows:

pos = initial_guess
g = gradient(energy(pos), pos)
while mag(g) > epsilon:

pos = pos - rate * g

g = gradient(energy(pos), pos)

As a result, when the loop exits, we know that the gradient of the
energy with respect to the position will be close to zero. This means that
to recover any one perturbation of the t-SNE formulation with respect to
an input point, all that is required is to run one single iteration of t-SNE
with dual numbers. By providing the dual-number implementation
the result of the execution of the floating-point implementation (as
explained in the previous paragraph), the loop will execute at most once
before exiting — in fact, in order for the sensitivity of the positions with
respect to the input to be recorded in the pos variable, we must force
the loop to execute at least once. Still, since t-SNE typically executes
between 100 and 1000 iterations in this loop, this simple optimization
achieves a significant speedup.

t-SNE Experiments T-SNE is often considered to be the state
of the art in NDR methods, but one of the main objections to its use
in practice is the opaque nature of its optimization criteria [52]. It
is unclear how effectively the projection recovers high dimensional
information. Consider the t-SNE axes in Figure 7. t-SNE is detecting
variation in the petal length and petal width of the Virginica and Ver-
sicolor cluster and subsequently spreading the cluster based on these
dimensions. This helps explain how petal length behaves in the projec-
tion, providing evidence that DimReader helps bridge the non-linear
unmapping gap [42].

4.2 Discovering Perturbations

The implementation of the equations in 3.4 for discovering perturba-
tions is straightforward as long as the machine has sufficient memory to
hold the expanded laplacian matrix, Ls. This matrix becomes very large
for very high-dimensional data and thus requires significant memory.
To solve this problem, we were again able to exploit the block structure
of the tangent map as well as the structure of the Laplacian matrix: the
diagonal values are ). ;; S; ; and the off diagonal values are —S; ;. We
implemented a version of power iteration that does not require access
to the matrix MT M — AL, but instead requires a function that, when
given a vector v, returns (M7 M — AL)v. The multiplication function



Fig. 10. DimReader axes and value heatmaps for the u,v, and x dimen-
sions of the swiss roll. A discussion of these plots is in Section 4.3.

calculates elements of the output vector individually and thus does not
require the entire Ly matrix.

Using this method, we uncovered perturbations for several datasets
projected with t-SNE. In the following experiments, we use the method
in Section 3.4.2 to find individual perturbations for each point.

421 lris

We first look at the best perturbation for the Iris dataset. Figure 8 shows
the DimReader plot for this perturbation as well as a plot for each
dimension that shows how much that dimension was perturbed in each
point through the color (the darker purple a point is, the more it was
perturbed). The DimReader plot shows that the best perturbation only
perturbs points in the Setosa (red) cluster. In the individual dimension
plots, the Setosa cluster is perturbed primarily in the Sepal length and
Sepal width dimensions which tells us that in this projection, points
in the Setosa cluster are sensitive to changes in the Sepal dimensions.
Comparing 8 to the t-SNE plots in Figure 7, the movement of the Setosa
cluster with the discovered perturbation is similar to the movement
when the sepal width or sepal length is perturbed.

4.2.2 MNIST Digits

Figure 9 (A) shows an sample of discovered perturbations in the pro-
jection. The perturbation images often resemble a variation of their
corresponding digit or a nearby digit (due to the constraints defined in
Section 3.4.2). These perturbations show us that t-SNE is capturing
meaningful information about the dataset. In Figure 9 (A), the perturba-
tion that moves the “seven” the most turns the ”seven” into a “two” and
moves it toward the cluster of “two”’s. Thus, DimReader, is showing
evidence that t-SNE is capturing information about what constitutes a
“two” and is using that information to separate out the two’s into their
own (imperfect) cluster.

4.2.3 MNIST Fashion

The MNIST Fashion dataset is similar to the digits dataset in that
each point represents a 28 x 28 pixel image and there are 10 different
classes of images (articles of clothing) but is more complicated than the
digits dataset. A t-SNE plot with selected perturbations found by our
technique is shown in Figure 9 (B). Just as in the digits perturbations,
there is structure in these perturbations. In the example in Figure 1 (C),
our technique is finding perturbations that capture information about
how t-SNE is projecting the data. DimReadertells us, that for the heel
in the middle, the perturbation that moves this point the most, changes

Fig. 11. DimReader axes and value heatmaps for the x, y, and z dimen-
sion of the interlocked rings. A discussion of these plots is in Section 4.3.

it from a heel into a flat shoe. This also shows us that t-SNE understand
the difference between flat shoes and heels and is able to separate them.

4.3 Synthetic Examples

In this section we will look at the DimReader plot with two synthetic
examples, the swiss roll and the interlocked rings, and compare them
to the value heatmaps for each dimension from Stahnke et. al’s Probing
Projections.

4.31

The swiss roll dataset is calculated from the equations x = ucos(u),
y = usin(u), z = v where 37” <u< 97” and 0 <v < 15. Figure 10
shows perturbations of the U,V, and X dimensions.

Swiss Roll

PCA In the v dimension, the DimReader plot shows that increas-
ing the v in the original data moves the projected points to the left.
In comparison, the value heatmap for the v dimension is difficult to
read due to the high variance in v between neighboring points. This
highlights a fundamental difference between DimReader and value
heatmaps: DimReader is showing what the projection is doing while
value heatmaps show the values of a dimension based on the placement
of points. If we created a projection that simply mapped each point to
its PCA coordinates through a table lookup, the value heatmaps would
not change whereas the DimReader plots would show nothing because
changing any of the dimensions would not change the projection.

The DimReader plot for the # dimension shows that changing the u
dimension would move the point along the spiral, from red to blue. The
isolines, however, are irregular from green to orange. These irregulari-
ties could be due to the resolution of the grid or the regularization. One
direction for future work is to automatically determine the appropriate
grid resolution and regularization for a projection.

t-SNE  In the DimReader plot for t-SNE, the u dimension behaves
exactly as we would expect, increasing as we move from red to blue.
The spacing of the lines around the curve, specifically how the curves
are wider on the outside than on the inside, indicates the bending does
not reflect the underlying data but rather is caused by the projection.

In the DimReader plot for v, t-SNE has flipped the green and yellow
segment (the points move to the bottom left rather than the upper right).
This appears less clear from the value heatmap alone.

In the plots for x, the highest values in the heatmap do not match the
area in the DimReader plot where the biggest change occurs.



MNIST Digits S Curve

100 200 500 1000 | 100 200 500 1000
Regular {SNE 33 69 212 88428 60 219 903
DimReader (4 cores) 46 122 539 3144| 3.8 108 548 9079
Regular lsomap 05 21 149 796 01 06 64 465
DimReader (4 cores) 3.7 22.5 2215 1845.1| 2.5 17.1 210.4 1890.6
Regular s 48 159 911 3574| 00 01 08 37
DimReader (4 cores) 6.5 204 103.7 3914| 03 06 23 83

Fig. 12. Performance figures for the MNIST digits dataset and the S-
Curve dataset, for progressively larger samples and three different NDR
methods. All figures are reported in seconds.

43.2

The DimReader plots and value heatmaps generated for the interlocked
rings dataset are shown in Figure 11.

Interlocked Rings

PCA The PCA plots from DimReader show that changing X or Z
would move the points upward and changing the Y dimension move
points to the right. Again, the plots here highlight the difference be-
tween our technique and the value heatmaps: the heatmaps of x and
z tell us that the x and z values are only changing over one ring each
whereas our technique is showing that PCA will move the rings verti-
cally if the x or z dimension is changed. DimReader shows what the
projection does, whereas heatmaps shows where the values go.

t-SNE  T-SNE has separated the two rings well. In the DimReader
plot of the X dimension, the red ring will move from left to right when
the X dimension is changed. Comparing the X dimension to the Y
dimension, for the red ring, the two axes are nearly perpendicular to
one another. This suggests that t-SNE is primarily using these two
dimensions for projecting the red ring. Furthermore, in the red ring the
X dimension changes much quicker than the Y dimension (the lines are
closer together) which indicates that t-SNE is distorting the shape of the
red ring. Similar observations can be made about the green ring with
the Y and Z dimensions. Again, the Y and Z are nearly perpendicular
in the green ring. In the Y dimension, the axes change their behavior
when they reach the gap in the green ring. Points in this region move
more slowly when changed which in turn tells us that this is likely a
tear in the ring caused by t-SNE that does not reflect the structure of
the underlying data. It is not as clear from the value heatmaps that the
gap is a tear in the data caused by the projection.

4.4 Performance

4.4.1 Known Perturbations

In this section, we report performance figures for the prototype imple-
mentation of DimReader. Although we were reasonably careful with
algorithmic and high-level design decisions that impact performance,
we did not make a significant effort to make DimReader fast. We expect
carefully-implemented versions of our proposal in high-performance
languages such as C++ or Java to be significantly faster, possibly by
an order of magnitude (typically the performance difference between
Python and aggressively optimized, compiled languages).

A table showcasing typical results is included in Figure 12. The
performance of DimReader for a given NDR method is dependent
on two main factors: the number of input points and the overhead
incurred by dual numbers. We need to execute a number of repeated
runs proportional to the base-2 logarithm of the number of input points,
and that is essentially unavoidable. We note that for the case of LLE
and t-SNE, the optimizations we described in the previous section make
the execution of the dual-number version of the projection much faster
than that of the regular numbers. As a result, DimReader can extract
axes with a relatively small performance overhead.

For cases such as Isomap, on the other hand, where we performed
no such optimizations, the performance of our method suffers a bit.
We argue that this is an acceptable tradeoft: DimReader still works
in an acceptable amount of time in the general case, but more careful
implementations can be significantly more efficient.

4.4.2 Discovering Perturbations

The most expensive part of searching for a perturbation is calculating
the tangent map. The tangent map is n*d X n*d and requires d
executions of DimReader to build it. For datasets with a large number
of data points and dimensions, this quickly becomes slow. Once we
have the matrix, the performance for finding the best perturbation
largely depends on whether or not we can the expanded Laplacian
matrix, Lg, (described in Section 4.2) in memory. If we can’t and
have to use power iteration, the performance depends on the speed
of our multiplication function as well as the amount of time it takes
power iteration to converge. We did not make a significant effort to
increase the performance for calculating the matrix or searching for
perturbations; this remains for future work.

5 DISCUSSION

Can we trust DimReader plots? While we have shown that Dim-
Reader can help determining how NDR plots can be trusted, a natural
question to ask is: can the DimReader plots themselves be trusted? One
natural scenario in which this comes up is when perturbation vectors
of nearby projections disagree with one another. It’s always possible
to show the vectors themselves as a diagnostic of the quality of the
reconstructed axis lines, but a proper, user-centric evaluation of the
settings in which DimReader’s axes are more informative than naked
NDR plots is clearly necessary, and will be the subject of future work.

Inverse readings DimReader enables interpretation of forward
transformations: given a perturbation of an input and a visualization,
DimReader provides an answer. But a different natural reading is the
inverse: given a projected point and a direction of movement in the
projection, what changes in the data could generate such movement? In
principle, the derivative information obtained by autodiff also captures
this inverse relationship [10], but the fact that we are dealing with pro-
Jections makes the problem fundamentally harder. A full investigation
is beyond the scope of this work.

More algorithms, better infrastructure  While DimReader shows
that it is possible to adapt a large number of existing NDR methods to
run within an autodiff framework, one goal is to provide DimReader
axes to as much existing visualization infrastructure as practically possi-
ble. In such scenarios, reducing the implementation effort even further
would be desirable. The majority of our difficulties porting algorithms
to automatic differentiation arose due to difficulties in evaluating deriva-
tives of linear-algebraic concepts, such as solutions of a linear system
and eigenvectors. Some of these have explicit formulas [38], but in-
corporating them in an autodiff system effectively and efficiently is
a fundamental challenge beyond the scope of our work. We note, in
addition, that our choice of automatic differentiation is not strictly nec-
essary. Other methods exist to evaluate function derivatives, including
manual derivation of the expressions. When using DimReader with a
specific NDR method, these alternatives might be more attractive. This
might be particularly true whenever approximations of the derivative
can be computed more efficiently than autodiff.

6 CONCLUSION

In this paper, we identified infinitesimal perturbations as a tool to enable
interpretation of NDR plots, and presented DimReader, a technique
that produces generalized axes for studying such perturbations. While
much work remains to be done, DimReader strikes a favorable balance
between generality and power, highlighting strengths and weaknesses
of a variety of NDR methods, and providing a novel perspective into
what NDR methods are actually visualizing.
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