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Abstract. We initiate the study of the vertex-ply of straight-line draw-
ings, as a relaxation of the recently introduced ply number. Consider
the disks centered at each vertex with radius equal to half the length
of the longest edge incident to the vertex. The vertex-ply of a drawing
is determined by the vertex covered by the maximum number of disks.
When looking at the vertex-ply number from a proximity perspective,
the set of disks can be interpreted as proximity regions. In this sense, a
drawing with vertex-ply number 1 is a weak proximity drawing, which we
call empty-ply drawing. We show non-trivial relationships between the
ply number and the vertex-ply number. Then, we focus on empty-ply
drawings, proving some properties and studying what classes of graphs
admit such drawings. Finally, we prove a lower bound on the ply and the
vertex-ply of planar drawings.

1 Introduction

Constructing graph layouts that are readable and that easily convey the informa-
tion hidden in the represented data is the main goal of graph drawing research.
Several aesthetic criteria have been defined to capture the user requirement for a
better understanding of the data, e.g., resolution rules [12,16], low-density draw-
ing [13], proximity drawings [15]. The ply number [9] of a graph is another such
criterion. We adopt the following notation: given a straight-line drawing Γ of
a graph G = (V,E), for each vertex v ∈ V consider an open disk Dv (called
the ply-disk of v) centered at v with radius rv equal to half of the length of the
longest edge incident to v. Over all points p on the plane, let k be the maxi-
mum number of ply-disks of Γ that include the point p in their interior. Then,
the drawing Γ has ply k. The ply number of G is the minimum ply over all its
drawings.

The ply number was originally proposed by Eppstein and Goodrich [11] in the
context of interpreting road networks as subgraphs of disk-intersection graphs.
The concept of a ply number is also related to proximity drawings of graphs [15].
A proximity drawing of a graph G is a straight-line drawing of G in which for
every two vertices u and v there exists a region of the plane, called proxim-
ity region of u and v, that contains other vertices in its interior if and only if
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Fig. 1: (a) Relative-neighborhood, (b) Gabriel, and (c) Ply proximity regions. (d) A
disconnected empty-ply graph. (e) A non-planar empty-ply drawing.

u and v are not connected by an edge in G. If G admits a proximity draw-
ing, it is a proximity graph. A proximity region specifies a set of points in the
plane that are closer to u and v than to the other vertices, and different prox-
imity regions lead to different definitions of proximity drawings. Regions can
be global, e.g., Euclidean minimum spanning trees [17], or local, e.g., relative-
neighborhood graphs [18] (Fig. 1a), Gabriel graphs [14] (Fig. 1b), and Delaunay
triangulations [7,17]. Proximity drawings of graphs are also studied in the weak
model [8], where the “if” part of the condition is neglected: i.e., if two vertices
are not connected by an edge, then their proximity region may be empty.

When looking at the ply number from the proximity perspective, one can
consider the local proximity region associated with a pair of vertices u and v as
the one composed of the disks centered at u and at v, with radius equal to half
of the length of the straight-line segment between u and v (Fig. 1c). Due to the
possible absence of edges, this is a weak proximity model. However, a drawing Γ
may have ply larger than 1 even if no proximity region contains a vertex different
from the two which defined it, since the ply of Γ is only determined by the way
in which different regions intersect each other.

For this reason, we relax the definition of ply number and introduce the
concept of vertex-ply number. Consider a straight-line drawing Γ of a graph G.
Over all vertex-points p on the plane (i.e., points which realize a vertex of G),
let k be the maximum number of ply-disks of Γ that include the point p in their
interior. Then, the drawing Γ has vertex-ply k. The vertex-ply number of G is
the minimum vertex-ply over all its drawings. In the special case in which Γ
has vertex-ply 1, i.e., every disk Dv contains only v in its interior, we say that
Γ is an empty-ply drawing. Note that an empty-ply drawing is in fact a weak
proximity drawing with respect to the proximity region defined above.

Some relationships between proximity models are known, e.g., any Delaunay
triangulation contains a Gabriel graph as a spanning subgraph, which in turn
contains a relative-neighborhood graph as a spanning subgraph, which in turn
contains a minimum spanning tree as a spanning subgraph [15]. It is hence
natural to ask about the role of empty-ply drawings in these relationships. We
first note that an empty-ply drawing may be non-planar (see Fig. 1e), which is
not the case for Delaunay triangulations, and thus for any of the other type of
proximity drawings. On the other hand, there exist empty-ply drawings that are
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not connected and that cannot be made connected by just adding edges while
maintaining the empty-ply property (see Fig. 1d), which is instead the case for
minimum spanning trees (and thus for all the other proximity drawings). These
two observations imply that empty-ply drawings are not directly comparable
with other types of proximity drawings.

The concept of empty-ply is related to partial edge drawings (PEDs) [3,4,5].
A PED is a straight-line drawing of a graph in which each edge is divided into
three segments: a middle part that is not drawn and the two segments incident
to the vertices, called stubs, that remain in the drawing and that are not allowed
to cross. Our Theorem 2 in Section 3 shows that an empty-ply drawing also
yields a PED whose stubs have nontrivial lengths.

Drawing graphs with low ply was first considered by Di Giacomo et al. [9].
They show that testing whether an internally triangulated biconnected planar
graph has ply number 1 can be done in O(n log n) time and that the class of
graphs with ply number 1 coincides with contact-unit-disk graphs [2], which
makes the recognition problem NP-hard. Angelini et al. [1] studied area re-
quirements of drawings of trees with low ply. De Luca et al. [6] performed an
experimental study demonstrating correlations between the ply of a drawing and
aesthetic metrics such as stress and uniform edge-lengths.

We first demonstrate non-trivial relationships between the ply number and
the vertex-ply number of graphs. In Section 2 we positively answer a question
from [9] (Problem 4) regarding whether an empty-ply drawing has constant ply.
In Section 3 we study properties of empty-ply graphs. In Section 4 we provide
several classes of graphs that admit empty-ply drawings and some classes that
do not (we consider k-ary trees, complete (bipartite) graphs, and squares of
graphs with ply number 1). Further, in Section 5 we answer another question
posed in [9] (Problem 3), regarding the relationship between (vertex-) ply and
crossings, by presenting graphs that admit drawings with constant ply and only
3 crossings but any planar drawing thereof requires linear ply. We conclude in
Section 6 with several open problems.

2 Relationships between Ply and Vertex-Ply

We start with a natural question about the relationship between the ply number
and the vertex-ply number of a graph.

Theorem 1. The ply of a drawing of a graph with vertex-ply h is at most 5h.

Proof. Let Γ be a drawing of a graph G with vertex-ply h. Suppose, for a con-
tradiction, that Γ has ply larger than 5h, that is, there exists a point p lying in
the interior of the k ply-disks of k vertices v1, . . . , vk, appearing in this radial
order around p, where k ≥ 5h+1; see Fig. 2a. Without loss of generality, assume
that v1 is the vertex closest to p. Let l be the line through p and v1, and let
l′ and l′′ be two lines through p creating angles π

3 and −π3 with l. These lines
determine a covering of the plane by six closed wedges A1, . . . , A6 centered at p,
each having π

3 as its internal angle.



4 Angelini et al.

v1

A2

p

l

A1

A3

A4A5

A6

vi
l′ l′′

(a) (b)

Fig. 2: (a) Illustration for the proof of Theorem 1. (b) An empty-ply drawing of a star
of degree 24. For readability, edges are not drawn.

Let A1 and A2 be the wedges delimited by the half-line starting at p and
passing through v1. For each vertex vi ∈ A1 ∪ A2 we have ∠v1pvi < π

3 . This
implies that |v1vi| < |vip| and hence that v1 belongs to the ply-disk Dvi . Thus,
if the union of the closed wedges A1 and A2 contains at least h vertices among
v2, . . . , vk, we obtain that v1 belongs to at least h+ 1 ply-disks, a contradiction.

Otherwise, there exist at least 4h+ 1 vertices in wedges A3, . . . , A6. At least
one of them contains at least h + 1 vertices. We can argue as above that the
closest vertex to p among these h+ 1 vertices belongs to the ply-disks of all the
other h vertices, a contradiction. This completes the proof of the theorem. ut

Corollary 1. The ply of an empty-ply drawing of a graph is at most 5.

Note that the converse of Corollary 1 does not hold. If a graph G does not
admit any empty-ply drawing, that does not imply that the ply number of G
is larger than 5. A star graph with degree larger than 24 does not have an
empty-ply drawing (see Thm. 3), but can be drawn with constant ply 2 [9].

3 Properties of Graphs with Empty-Ply Drawings

Let Γ be a straight-line drawing of a graph G. Let {D′v, v ∈ V } be the set of
open disks where D′v is centered in v, but with radius only rv

2 . We can think of
these disks as obtained by shrinking the original ply-disks of Γ to half-length
radius. Note that the disks in {D′v, v ∈ V } are pairwise disjoint if and only if Γ
is an empty-ply drawing. This observation implies the next result.

Lemma 1. If Γ is an empty-ply drawing, then the sum of the areas of all ply-
disks does not exceed 4 times the area of their union.

Proof. Each disk D′v has area four times smaller than Dv, but is drawn inside
the union of all ply-disks. ut

In the rest of the paper we frequently use disk-packing arguments based
on Lemma 1. Another consequence of the observation above is a relationship
between empty-ply drawings and the most popular type of PED, called 1

4 -
SHPED [4], in which the length of both stubs of an edge e is 1

4 of e’s length.
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Theorem 2. An empty-ply graph admits a 1
4 -SHPED.

Proof. Let Γ be an empty-ply drawing of a graph G = (V,E) with the set of
disks {D′v, v ∈ V }. Let Γ ′ be the drawing obtaining from Γ by keeping for each
edge (u, v) only the two parts in the interior of disks D′u and D′v. By definition,
both these parts cover at least 1

4 of (u, v). Since no two such disks overlap, there
is no crossing in Γ ′, and the statement follows. ut

We now focus on the relationship between the radii of the ply-disks of ad-
jacent vertices in an empty-ply drawing. For the following two lemmas we use
that for each vertex v, and for each edge (v, w) incident to v, we have rv ≤ |vw|,
as the drawing is empty-ply, and rv ≥ |vw|2 , by the definition of the ply-disk Dv.

Lemma 2. In an empty-ply drawing, for any two edges (u, v) and (v, w) incident

to the same vertex v, we have 1
2 ≤

|uv|
|vw| ≤ 2.

Lemma 3. In an empty-ply drawing, the radii of the ply-disks of two adjacent
vertices u and v differ by at most a factor of 2, i.e., 1

2 ≤ ru
rv
≤ 2.

We conclude the section by presenting a tight bound on the maximum degree
of graphs that admit empty-ply drawings.

Theorem 3. No vertex of an empty-ply graph has degree greater than 24.

Proof. To obtain a contradiction, let Γ be an empty-ply drawing of a graph G
with a vertex v of degree greater than 24. By Lemma 2, the lengths of all edges
of v are in the interval [m, 2m], where m is the length of the shortest edge. Note
that there are at least 13 edge lengths either in the interval [m,

√
2m] or in the

interval [
√

2m, 2m]. In either case, there exist two neighbors u and w of v such
that |vu| ≤ |vw| ≤

√
2|vu| and α = ∠uvw ≤ 2π

13 . Scaling Γ by a factor of |vu|−1,

we may assume w.l.o.g. that |vu| = 1 and that |vw| = q ∈ [1,
√

2]. By the law of
cosines, |uw|2 = 1 + q2 − 2q cosα. As Γ is an empty-ply drawing, the vertex v
does not belong to the open disk centered at w. Hence |uw| ≥ q

2 .
From the above reasoning it follows that q should satisfy the quadratic in-

equality q2

4 ≤ 1 + q2 − 2q cosα, which yields that either q ≤ 4 cosα−
√
16 cos2 α−12
3

or q ≥ 4 cosα+
√
16 cos2 α−12
3 . This contradicts the fact that q ∈ [1,

√
2], because:

4 cos 2π
13 −

√
16 cos2 2π

13 − 12
.
= 2.8 < 3 and 4 cos 2π

13 +
√

16 cos2 2π
13 − 12

.
= 4.27 >

4.24
.
= 3
√

2. This concludes the proof of the theorem. ut

Note that K1,24 admits an empty-ply drawing with only two different lengths
of edges (see Fig. 2b) and so the degree bound provided in Theorem 3 is tight.

4 Graph Classes with and without Empty-Ply Drawings

Here we consider what types of graphs admit empty-ply drawings and what
types do not.
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Fig. 3: (a) Empty-ply drawing K7; note that there are edges drawn on top of each
other. (b) Partition of the region where the vertices of K8 can be placed.

4.1 Complete Graphs

We prove that K7 is the largest complete graph admitting an empty-ply drawing.

Theorem 4. Graph Kn admits an empty-ply drawing if and only if n ≤ 7.

Proof. (sketch) In Fig. 3a, we present an empty-ply drawing for K7. To prove
that K8 does not admit an empty-ply drawing, suppose for a contradiction, that
K8 has an empty-ply drawing Γ . Let (x1, x2) be the longest edge of Γ , w.l.o.g.
having length 2; assume that x1 and x2 lie on an horizontal line l. Since (x1, x2)
is the longest edge, the remaining six vertices lie in the intersection of two disks
centered at x1 and x2, respectively, with radius 2; also, by Lemma 2, they lie
outside the two disks centered at x1 and x2 with radius 1; refer to Fig. 3b. This
defines two closed regions in which these vertices lie, one above l and one below.

Using two circles centered in x1 and x2 with radius
√

2, we partition each
of these two regions into four closed subregions, called A+, B+, C+, D+ and
A−, B−, C−, D−, where the apex + or − indicates the region above or below l,
respectively. Namely, any point in the interior of A+ ∪ A− (of D+ ∪ D−) has
distance larger (smaller) than

√
2 from both x1 and x2; while any point in the

interior of B+ ∪ B− (of C+ ∪ C−) has distance smaller (larger) than
√

2 from
x1 and distance larger (smaller) than

√
2 from x2.

We prove the statement by showing that any placement of the six remaining
vertices in these regions leads to a contradiction using a series of observations
shown in the Appendix. We denote by |Xy|, with X ∈ {A,B,C,D} and y ∈
{+,−}, the number of vertices in Xy. First note that each region can contain at
most one vertex, except for D+ and D−, which may contain two vertices. In fact,
if we place any vertex w in a region Xy, with X ∈ {A,B,C} and y ∈ {+,−},
then the ply-disk Dw of w (defined, at least by the distance to x1, x2) covers
the entire region Xy. Regions D+ and D−, on the other hand, have area with
height 1 and width 0.5. Let w ∈ D+ be the point at distance

√
2 from both x1

and x2 and Dw be its ply-disk. Then, set D+ \Dw defines an area with diameter
at most 1

3 and it is not sufficient to place more than one vertex, since the ply
disks would have at least a radius 0.5 (see Observation 3).
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Fig. 4: Empty-ply drawing of (a) K2,12, (b) K3,9, and (c) K4,6. Note that the drawing
of K4,6 has edges drawn on top of each other.

Combining the placement of the vertices in different regions, we can use
similar arguments to prove that |D+ ∪D−| ≤ 3 (see Observation 4) and |A+ ∪
A−| ≤ 1 (see Observation 5). Also, if |A+| = 1 (resp. |A−| = 1), then |D−| ≤ 1
(resp. |D+| ≤ 1) (see Observation 6). Thus, if |A+∪A−| = 1 then |D+∪D−| ≤ 2
(see Observation 7), Also, if |A+| = 1 (resp. |A−| = 1) and |B−| = 1 (resp.
|B+| = 1) then either |B+| = 0 or |C+| = 0 (resp. |B−| = 0 or |C−| = 0),
i.e., |B+ ∪ C+| ≤ 1 (resp. |B− ∪ C−| ≤ 1) (see Observation 9). By symmetry, if
|A+| = 1 (resp. |A−| = 1) and |C−| = 1 (resp. |C+| = 1) then either |B+| = 0 or
|C+| = 0 (resp. |B−| = 0 or |C−| = 0), i.e., |B+∪C+| ≤ 1 (resp. |B−∪C−| ≤ 1).
Hence, if |A+ ∪A−| = 1, the other regions cannot contain 5 vertices.

The final case where |A+ ∪ A−| = 0 directly implies the claim for K9. To
prove this for K8, we use in Observation 8 that, if |B−| = 1 and |C+| = 1
(resp. |B+| = 1 and |C−| = 1), then |D+ ∪ D−| ≤ 1, which again leads to a
contradiction. This concludes the proof of the theorem. ut

4.2 Complete bipartite graphs

We now consider complete bipartite graphs. For proof-by-picture of the next
theorem see Fig. 2b and Figs. 4a-4c.

Theorem 5. Graphs K1,24, K2,12, K3,9, and K4,6 admit empty-ply drawings.

Note that Theorem 3 implies that K1,25 does not admit any empty-ply draw-
ing, and hence this is true for any complete bipartite graph Kn,m with n or m
greater than 24. This leaves a wide open gap between the upper bounds on the
values of n and m, and the lower bounds from Theorem 5.

For K2,m, we give a negative result for m ≥ 15 in the following theorem
based on arguments similar to those in Theorem 4 (see proof in the Appendix).

Theorem 6. Graph K2,m with m ≥ 15 does not admit any empty-ply drawing.
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4.3 Trees of Bounded Degree

A d-ary tree T with k levels is a rooted tree where all vertices at distance less
than k from the root have at most d children and the remaining ones are leaves.
If all the non-leaf vertices have exactly d children, we say that T is complete.
Any tree with maximum degree ∆ is a subtree of a (∆− 1)-ary tree.

Note that binary trees admit empty-ply drawings, as the drawings with ply 2
constructed by the algorithm in [9] are empty-ply drawings. For larger degree, we
can apply Corollary 1 to complete 10-ary trees not admitting any drawing with
constant ply [1], and find that these trees do not admit any empty-ply drawing
either. We show that even 4-ary trees may not admit any empty-ply drawing.

Theorem 7. For sufficiently large k, the complete 4-ary tree Tk with k levels
admits no empty-ply drawing.

Proof. Assume without loss of generality that k is even and that Tk has an
empty-ply drawing Γ where the ply-disk of the root v0 has unit radius. We
announce that for simplicity the following estimates are not stated in the tightest
form. We will make use of the following consequences of Lemmas 2 and 3:

Claim (A). If a ply-disk of a vertex u in Γ has radius at least 2i, then all the
leaves of the subtree rooted at u have radii at least 22i−k.

Proof. Since ru ≥ 2i, the distance between u and the root is greater than i. Thus
the path from u to its leaves has length at most k − i; the claim follows. ut
Claim (B). If v is a leaf whose ply-disk has radius rv ∈ (22i−k, 22i−k+2], with
i ∈ {0, k − 1}, then its Euclidean distance from the root is |v0v| ≤ 2i+2.

Proof. Let v0, v1, . . . , vk = v be the path from the root v0 to vk in Tk. Since
rv0 = 1, edge (v0, v1) has length at most 2. Also, by Lemma 2, the lengths of the
edges can grow at most by a factor 2 along the path; hence, |vj−1vj | ≤ 2j for
j ∈ {1, . . . , i}. If we traverse the path in the opposite direction from vk, whose
ply-disk has radius at most 22i−k+2, we get analogously that |vk−j+1vk−j | ≤
2j+2i−k+2 for j ∈ {1, . . . , k − i}.

The total distance is thus bounded by |v0vk| ≤ |v0v1|+|v1v2|+· · ·+|vk−1vk| =∑i
j=1 |vj−1vj | +

∑k−i
j=1 |vk−j+1vk−j | ≤

∑i
j=1 2j +

∑k−i
j=1 2j+2i−k+2 = 2i+1 − 2 +

2i+1 − 23+2i−k ≤ 2i+2, and the statement follows. ut
We now distribute the 4k leaves to k sets L0, . . . , Lk−1 (all logarithms binary):

a) if i ≥ 3 log k then Li = {v : rv ∈ (22i−k, 22i−k+2]}
b) if i < 3 log k then Li = {v : whose largest predecessor u has radius ru ∈

[2i, 2i+1)}
Some of these sets are empty by the definition, but it is irrelevant to our

further deductions. By pigeonhole principle, either some Li, i ≥ 3 log k satisfies

|Li| ≥ 4k

2k2 or some Li, i < 3 log k satisfies |Li| ≥ 4k

6 log k , since k−3 log k
2k2 + 3 log k

6 log k ≤ 1.

In case a) we show that the total area of ply-disks corresponding to leaves
of Li is too large for an empty-ply drawing Γ . In case b) we use a slightly more
elaborate argument considering also the predecessors of the vertices in Li.
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Case a) Assume that for some i ≥ 3 log k it holds that |Li| ≥ 4k

2k2 . The total

area occupied by the disks in Li is at least 4k

2k2π42i−k = 8iπ
2k2 . By Claim (B),

for every v ∈ Li it holds that |v0v| ≤ 2i+1, hence all ply-disks of Li must be
contained in a disk centered at the root of radius 2i+1 + 22i−k+2 ≤ 5 · 2i, since
for i ∈ {0, . . . , k} : i > 2i− k. In particular this disk has area at most 25π4i.

In order to apply Lemma 1, it suffices to choose k large enough such that
8iπ
2k2 > 4 · 25π4i for all i ≥ 3 log k, i.e., k > 250.

Case b) Now assume that for some i < 3 log k it holds that |Li| ≥ 4k

6 log k . Any

v ∈ Li has radius smaller than 23 log k−k, as otherwise v would be considered
in case a). To obtain the maximum distance between v and the root v0 we
argue that the first 3 log k disks along the path from v0 to v may have radius at
most 2i+1. Analogously as in the proof of Claim (B), the j-th predecessor of v
has radius at most 23 log k−k+j . An upper bound of |v0v| ≤ 2i+2(3 log k + 1) is
obtained by summing up.

We now consider the subtree T ′ of Tk induced by the vertices of Li and all
their predecessors. Note that the drawing of the entire tree T ′ shall be contained
within a disk of radius 2i+2(3 log k + 1) + 23 log k−k, i.e., in area at most 4i+3π.
On the other hand, by Claim (A), each of the leaves has radius at least 22i−k .

Thus, their total area is at least 4k

6 log k42i−kπ = 8iπ
6 log k .

The number of parents of disks in Li is at least 4k−1

6 log k , each of radius at

least 2i−1, hence all these parents occupy area bounded from below by the same

expression 8iπ
6 log k . Thus, all leaves in Li and all their k − i predecessors occupy

space at least 8iπ
6 log k (k − i) ≥ 8iπk

12 log k . Again, in order to apply Lemma 1, it

suffices to choose k large enough such that 8iπk
12 log k > 4 ·64π4i for all non-negative

i < 3 log k (in particular for i = 0). By a straightforward calculation one could
verify that the inequality holds e.g., for k ≥ 216.

For k = 216 at least one of the two cases applies, which concludes the proof.
ut

Theorem 7 leaves open the question of whether ternary trees admit empty-ply
drawings. We remark that the algorithm for binary trees [9] adopts a common
drawing style in graph drawing: the orthogonal one with a shrinking factor of 1/2;
see also [10]. In the following theorem, whose proof is the Appendix, we prove
that this technique fails for ternary trees, for any shrinking factor in (0, 1).

Theorem 8. Rooted ternary trees do not admit empty-ply drawings constructed
in orthogonal fashion with shrink factor q for any q ∈ (0, 1), i.e., when the
distance from a vertex to its children is q times the distance to its parent.

4.4 Graph Squares

The square of a graph G is the graph obtained from G by adding an edge between
each vertex and the neighbors of its neighbors.
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Fig. 5: Nested triangles graph: (a) “The most natural” drawing. (b) A non-planar draw-
ing with ply 5. (c) A planar drawing with ply 4. The disks of three vertices at the same
level do not properly overlap, and disks at levels i and i+ 3 do not overlap.

Theorem 9. Let G2 be the square of a graph G. If G admits a drawing with ply
1, then G2 admits an empty-ply drawing. Furthermore, if G is a subgraph of a
triangular tiling, then G2 admits an empty-ply drawing with ply at most 4.

Proof. Let Γ be a straight-line drawing of G with ply 1. As proved in [9], all
the edges of G have the same length, say 1, in Γ , and every two non-adjacent
vertices are at distance at least 1 from each other. Hence, adding the edges of
G2 \G in Γ produces a drawing Γ 2 of G2 in which each edge has length at most
2. This implies that every ply-disk has radius at most 1 in Γ 2, and thus Γ 2 is
an empty-ply drawing. Note that Γ 2 may contain edge overlaps.

For the second part of the statement, recall that if G is a subgraph of a
triangular tiling, then it admits a drawing Γ in which all edges have the same
length and all the angles are multiples of π3 . Hence, Γ has ply 1. Also the drawing
Γ 2 obtained by adding the additional edges of G2 \ G to Γ is an empty-ply
drawing. In this case, however, we can also prove that the ply of Γ 2 is at most 4;
recall that an upper bound of 5 to the ply of Γ 2 is already implied by Corollary 1.

W.l.o.g. let the triangular tiling be of unit edge length. Consider the open
disk of unit radius, which is centered at an arbitrary point p on the plane. If p is
not a vertex of the triangular tiling, at most four vertices of the triangular tiling
may fall in this disk. In the case where p is a vertex of the triangular tiling, no
other vertex of the tiling falls in the disk, but only on its boundary. Thus, any
point p can be internal to at most four ply-disks of the tiling vertices. ut

5 Ply and Vertex-Ply of Planar Drawings

In the original paper on the ply number it was observed that considering only
plane graph drawings may prevent finding low ply non-plane drawings [9]. In
particular, for the class of nested-triangles graphs the “most natural” planar
drawing has ply Ω(n) (see Fig 5a), while there exist non-planar drawings (with
edge overlaps) with ply 5 (see Fig. 5b).

We strengthen this observation by providing a planar 3-tree G admitting a
non-planar drawing (with only 3 crossings) with ply 5, such that any planar
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v1 v2

v3

u

xm

y1
z1

x1

zm ym

(a)

v1 v2

u

(b)

v1 v2

v3

u

xm

y1z1

x1

zm
ym

z2

(c)

Fig. 6: (a) The planar 3-tree G in the proof of Theorem 10. (b) A set of 28 disks of radius
1
8

covering the whole region delimited by triangle uv1v2 when |v1v2| = 1 > |uv1|, |uv2|.
(c) A non-planar drawing of G with ply 5 and vertex-ply 4.

drawing of G has ply Ω(n); the same linear lower bound holds even for vertex-
ply when the outer face is fixed. Recall that a planar 3-tree can be constructed,
starting from a 3-cycle, by repeatedly adding a vertex inside a triangular face
and connecting it to all three vertices of this face. Note that the same stronger
statement does not hold for the class of nested-triangles graphs, as a planar
drawing with ply 4 can always be constructed; see Fig. 5c.

Our result also gives a negative answer to an open question posed in [9] on
whether there exists a relationship between the number of crossings and the ply
number of a drawing. Our example shows that one can reduce the ply number
from Ω(n) to O(1), by introducing only O(1) crossings.

Theorem 10. There exists an n-vertex planar 3-tree G such that any planar
drawing of G with a fixed outer face has vertex-ply Θ(n), and hence ply Θ(n),
while G admits a drawing with ply 5 and vertex-ply 4 with three edge crossings.

Proof. Graph G has three vertices v1, v2, and v3 on the outer face, and a vertex
u that is connected to all of v1, v2, and v3. Refer to Fig. 6a. In addition, it
contains three paths x1, . . . , xm, y1, . . . , ym, and z1, . . . , zm, each on m = n−4

3
vertices. The edge set further contains edges (u, x1), (u, y1), (u, z1) and also
(xi, v1), (xi, v2), (yi, v2), (yi, v3), (zi, v1), (zi, v3) for each i ∈ {1, . . . ,m}.

Consider any planar drawing Γ of G. Suppose, w.l.o.g., that (v1, v2) is of unit
length and that it is the longest edge in Γ among the three edges incident to
the outer face, that is, |v2v3|, |v1v3| ≤ 1. Since vertex u lies inside the triangle
v1v2v3, we have |uv1|, |uv2| < 1. Hence, it is possible to cover the whole region of
the plane delimited by triangle uv1v2 with a set of 28 disks, each having radius
1
8 , as illustrated in Fig. 6b. Thus, at least one disk D out of these 28 contains in
its interior at least m

28 = n−4
84 vertices out of x1, . . . , xm.

Consider now any vertex xi ∈ D. Since xi is connected to both v1 and v2, the
longest of its incident edges has length at least 1

2 , and hence the radius of the
ply-disk of xi is at least 1

4 . This implies that the ply-disk of xi entirely contains
the disk D in its interior, and hence it contains all the vertices inside it. Since
this is true for all the n−4

84 vertices inside D, the statement follows.
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A non-planar drawing of G with ply 5 and vertex-ply 4 is depicted in Fig. 6c.
Here vertices v1, v2 and v3 form an equilateral triangle with barycenter u. Vertices
x1, . . . , xm are arranged along the axis of the segment v1v2 at distances growing
exponentially by a factor of 2, analogously for vertices y1, . . . , ym and z1, . . . , zm.
The disk Du overlaps with Dx1

, Dy1 , and Dz1 , without enclosing these vertices.
The drawing of the subset of vertices {u, v1, v2, v3, x1, y1, z1} is empty-ply and
of ply 2. After considering the remaining vertices, the disks of v1, v2, v3 may
contain all of them in their interior. Thus we obtain ply 5 and vertex-ply 4. ut

6 Conclusions and Future Work

We defined and studied the vertex-ply of a straight-line drawing, paying partic-
ular attention to the special case of empty-ply drawings, whose vertex-ply is 1.
We conclude with several natural open problems.

1. We know that binary trees admit empty-ply drawings [9] and that 4-ary
trees do not (Theorem 7). What about ternary trees? Note that Theorem 8
rules out a large class of possible drawings (orthogonal and shrinking).

2. Another way of generalizing binary trees is to maintain the degree restriction,
leading to the question: do (planar) graphs of maximum degree 3 admit
empty-ply drawings?

3. In Theorem 9 we proved that the square G2 of a graph G with ply 1 admits
an empty-ply drawing, which has ply at most 5 by Corollary 1. On the other
hand, if G is a subgraph of a triangular tiling, then the empty-ply drawing
of G2 has ply at most 4. Does the square of every graph with ply 1 admit
an (empty-ply) drawing with ply 4? Note that there are ply 1 graphs that
are not subgraphs of a triangular tiling.

4. Looking at empty-ply drawings from the proximity perspective, it is natural
to consider the generalization in which ply-disks do not need to be empty,
but can contain at most k vertices. We call a drawing with this property a
k-ply drawing, in compliance with the definition of k-Gabriel and k-relative-
neighborhood drawings [15]. The argument of Theorem 10 proves that there
exist n-vertex graphs whose any planar drawing is Ω(n)-ply.

5. In Theorem 4 we proved a tight bound of 7 on the size of complete graphs
admitting empty-ply drawings. For complete bipartite graphs Kn,m, we have
a tight bound of m = 24, for n = 1, and an almost tight bound of 12 ≤ m ≤
14, for n = 2, with larger gaps between the bounds for larger values of n.
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Appendix

Complete proof of Theorem 4

In this section we give a complete proof of Theorem 4, which we restate here for
the reader’s convenience.

Theorem 4. Graph Kn admits an empty-ply drawing if and only if n ≤ 7.

For the contrary we assume that there exists an empty ply drawing of Kn

where n ≥ 8. We state observations regarding the edge (x1, x2) and placement
of vertices in specified regions and conclude the Theorem by lemmas where we
distinguish the different cases about the number of vertices placed below the
edge (x1, x2).

Let Γ be an empty-ply drawing of Kn where e = (x1, x2) is the longest edge
of Γ with length 2. Thus all other vertices lie in the intersection of the annuli
centred at x1, x2 with radii 1 and 2. Without loss of generality we draw this edge
as horizontal line segment as in Figure 7.
We partition the intersection is as follows:

A = {x ∈ IR2 :
√

2 < |x1x| ≤ 2,
√

2 < |x2x| ≤ 2},
B = {x ∈ IR2 : 1 ≤ |x1x| ≤

√
2,
√

2 ≤ |x2x| ≤ 2},
C = {x ∈ IR2 :

√
2 ≤ |x1x| ≤ 2, 1 ≤ |x2x| ≤

√
2},

D = {x ∈ IR2 : 1 ≤ |x1x| ≤
√

2, 1 ≤ |x2x| ≤
√

2}.

x1 x2

√
2

√
2A+

A−

B+

B−

C+

C−

D+

D−

Fig. 7: Where + is above the edge (x1, x2) and − below respectively.
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Observation 1. There is at most one vertex in B+ and by symmetry in B− as
well as in C+ and C−.

Proof. Note that the diameter of B+ meaning the maximal distance of any two
points in B+ is ≤ 0.75 (see Figure 8).
We split the area of B+ into two parts like indicated in Figure 9:

B1 = {x ∈ B :
√

2 ≤ |x2x| ≤
√

3},
B2 = {x ∈ B :

√
3 ≤ |x2x| ≤ 2}.

x1 x2

√
2

√
2A+

A−

B−

C+

C−

D+

D−

0.75

0.71

Fig. 8: The diameter of B+ is 0.75.

x1 x2

√
2

√
2

√
3

B2
B1

Fig. 9: Split into B+
1 and B+

2 .

Any vertex located in B+
2 has a ply disk radius of ≥

√
3
2 ≈ 0.85. Thus when-

ever there exists a vertex in B+
2 there cannot be a vertex in B+

1 . Furthermore
the diameter of B+

1 is 0.54 hence there exists at most one vertex with ply disk

radius of
√
2
2 ≈ 0.7. ut

Observation 2. There is at most one vertex in A+ and by symmetry in A−.

Proof. We split

A+ = {x ∈ IR2 :
√

2 < |x1x| ≤ 2,
√

2 < |x2x| ≤ 2}

into four parts as in Figure 10:

A1 = {x ∈ IR2 :
√

3 < |x1x| ≤ 2,
√

3 < |x2x| ≤ 2},
A2 = {x ∈ IR2 :

√
2 < |x1x| ≤

√
3,
√

3 < |x2x| ≤ 2},
A3 = {x ∈ IR2 :

√
3 < |x1x| ≤ 2,

√
2 < |x2x| ≤

√
3},

A4 = {x ∈ IR2 :
√

2 < |x1x| ≤
√

3,
√

2 < |x2x| ≤
√

3}.
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x1 x2

√
2

√
2

√
3

√
3

A1
A2 A3

A4

Fig. 10: Split A+ into four regions.

x1 x2

√
2

√
2

√
3

√
3

0.73
0.79

Fig. 11: Maximal distance of any vertex in
A to any vertex in A1.

Case 1. A vertex is placed in A+
1 .

The maximal distance of any vertex inA+ to a vertex inA+
1 is≤ 0.79 (cf. Figure 11),

but the ply disk has a radius of at least
√
3
2 ≈ 0.85. Thus whenever there exists

a vertex in A+
1 there cannot be another vertex in A+.

Case 2. A vertex is placed in A+
2 .

Similarly to Case 1. the maximal distance of any two vertices in A+
2 and A+

4 is
less than 0.76 and thereby A+

4 has to be empty since the ply disk has a radius

of at least
√
3
2 ≈ 0.85 (cf. Figure 12).

Assume a second vertex in A+
3 . The ply disk of the vertex in A+

2 has a radius

of at least
√
3
2 and thus this vertex needs to be placed at a distance of at least

√
3
2 away from the rightmost coordinate of A+

3 . Now the ply disk of the vertex

in A+
2 is at least ≈ 0.92. A scheme is presented in Figure 13.

To express this in detail we introduce a series based on the distances:
f(n) describes the minimal distance between x2 and the vertex in A+

2 at the nth
iteration. f(n) is the side of the triangle defined by the edge length of

√
2, 2 and

the angle 41.41◦+α. The angle α depends on the ply radius of the vertex in A+
2

of the previous iteration. This is illustrated in Figure 14:

f(1) =
√

3

f(n) =

√√√√22 +
√

2
2 − 2 · 2 ·

√
2

(
3

4
cos(α)−

√
7

4
· sin(α)

)

cos(α) =

22 +
√

2
2 −

(
f(n−1)

2

)2
2 · 2 ·

√
2
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x1 x2

√
2

√
2

√
3

√
3

0.76

Fig. 12: The maximal distance between any
two vertices in A+

2 and A+
4

x1 x2

1
√
22−

√
2

A1,2

2−
√
30 2

A1,3

√
3

0.85

0.92

0.96

1

Fig. 13: A schematic description of the in-
creasing ply-radius of the vertex in A+

2 .

We now observe that lim
n→∞

f(n) = 2. Thereby if we want to place one vertex

in A+
2 and one vertex in A+

3 we actually place a vertex at the highest coordinate
in B+ and a vertex at the highest coordinate in C+ with distance 1 of each
other. We conclude that whenever there exists one vertex in A+

2 then A+
3 has to

be empty.

x1 x2

2
√
2

41.41◦

f (n)

√
2

α

f(n−1)
2

Fig. 14: f(n) describes the minimal valid distance of any vertex in A+
2 to the vertex

x2. f(n) is the length of the side of the triangle defined by the edge length of
√

2, 2
and the angle 41.41◦ + α. The angle α depends on the ply radius of the vertex in A+

2

of the previous iteration.
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Case 3. A vertex is placed in A+
4 .

The diameter of the region A+
4 is 0.5. With a ply disk of at least

√
2
2 ≈ 0.7 there

is at most one vertex in A+
4 .

The three cases conclude our observation, that there exists at most one vertex
in A+ which can be either in A+

1 , A
+
2 , A

+
3 or A+

4 . ut

Observation 3. There are at most two vertices in D+.

Proof. Let x ∈ D+ be the point with the largest distance from e. Note that this
point is unique. The diameter of the set D+ \Cx, where Cx is the ply disk of x,
is less than 0.3 and hence there cannot be placed two more disks with radius at
least 0.5 (cf. Figure 15).

x1 x2

√
2

√
2A+

A−

B+

B−

C+

C−

D+

D−

0.3

Fig. 15: One vertex is placed at the highest coordinate in D+. Its ply disk indicates a
small remaining region for any other vertices in D+.

ut

Observation 4. There are at most three vertices in D+ and D−.

Proof. Consider the top vertex dt to place in D+. The distance of either x1 or
x2 needs to be at most 2 × dist(dt, c) where c is the center of (x1, x2). Solving
the equation

dist(x, dt) = 2× dist(c, dt)

for x = x1 and x2 partitions the region D+ into a top (D+
1 ) and a bottom part.

Placing one vertex in D+
1 and one in D−1 we can bound the region to place the

second vertex in D+ to have a minimal distance of 1.58
2 of the topmost coordinate

in D+
1 (placing a vertex at the topmost coordinate of D−3 ). The region between

c and this bound is called D+
3 and the region in between D+

2 . Any vertex in D+
2

excludes vertices in D+
1 and D+

3 and thus of any two vertices in D+ dt has to
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x1 x2

√
2

√
2

A−

B+

B−

C+

C−

A+

D+
1

D+
2

D+
30.21

D−1

D−2

D−3

Fig. 16: Partition of D+ and D−. Whenever there is a vertex in D+
2 then D+

1 and D+
3

are empty.

lie in D+
1 where db (the bottom vertex) has to lie in D+

3 . The regions are drawn
in Figure 16.

Any four vertices in |D+| + |D−| have to be placed in D+
1 , D

+
3 , D

−
1 and

D−3 . Two vertices in D+
3 and D−3 need a distance ≥ 0.5. Thus according to the

diameter of D+
3 ∪D−3 ≤ 0.42 there can not be two vertices with ply disk radii of

at least 0.5.
ut

Observation 5. Whenever there exists a vertex in A+ there cannot be a vertex
in A−.

Proof. Assume there exist one vertex in A+ and one vertex in A−. The minimal
distance these vertices can have is > 2 which contradicts the maximality of the
edge (x1, x2). ut

Observation 6. Whenever one vertex exists in A− there is at most one vertex
in D+.

Proof. Assume the vertex a ∈ A− is fixed at the highest possible position. The
distance of a to the center c of (x1, x2) is > 1. Where as the distance of any
point d ∈ D+ to c is < 1 due to the maximality of (x1, x2). Thus if d is at the
highest possible coordinate c is covered by its ply disk (distance a to b = 2).
Solving the equation

dist(a, c) = 2dist(x, c)

results in a circle which includes D+ completely (shown in Figure 17). The circle
is centered 1

3 above c and has a radius of 2
3 . The ply disk of any point d in the

circle covers c and thus there can not be a second vertex in D+. ut

Observation 7. Whenever there exists one vertex in A+ then there are at most
two vertices in D+ ∪D−.
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x1 x2

√
2

√
2

A−

B+

B−

C+

C−a

2
3

Fig. 17: A vertex in A− causes the ply disk of any vertex in D+ to cover the center of
(x1, x2) and thus there can not be a second vertex in D+.

Proof. Assume there exist four vertices in A+, D+ and D−. By Observation 6
there is at most one vertex in D− thus there are exactly two vertices in D+.

Note that by Observation 4 the top vertex in D+ has at least the distance 1√
3

from c. Assume the top vertex in D+ to be placed exactly at this coordinate. The
minimal distance d from the vertex in A+ to either x1 or x2 can be calculated
by solving the following equation:

d2 = 12 +

(
d

2
+

1√
3

)2

d2 = 1 +

(
d

2

)2

+ 2 · d
2
· 1√

3
+

1

3

d2(1− 1

4
) = 1 +

1

3
+

d√
3

3

4
d2 − 1√

3
d− 4

3
= 0

Which has the one positive solution d = 2
9

(√
3 +
√

39
)
≈ 1.77 and thus the

minimal distance of any vertex in A+ to the center of (x1, x3) is d
2 + 1√

3
≈ 1.47

(cf. Figure 18). The distance of any vertex in D− to the vertex in A+ has to be
≤ 2 due to the maximality of the edge (x1, x2). But the ply disk of the second
vertex in D+ covers the remaining region to place any vertex below (x1, x2).
This contradicts our assumption that there exist four vertices in A+, D+ and
D−. ut

Observation 8. Whenever there exists exactly one vertex in B− and exactly
one vertex in C+ then there exists at most one vertex in D+ or D−.
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x1 x2

√
2

√
2

A−

B+

B−

C+

C−

1√
3

2
9

(√
3 +
√
39

)
≈ 1.77

2

0.56

1.47

Fig. 18: Whenever there exist exactly two vertices in D+ and one in A+ there cannot
exist a vertex in D−.

Proof. We will use the same partition of B− and C+ as in Observation 1 and
distinguish three cases about the placement within B− and C+.

Case 1. There exist one vertex in B−2 and one vertex in C+
2 .

Note that the placement of the vertices is unique in this case. The distance of
the two vertices is 2. Their ply disks meet at the center of (x1, x2) and the rest
of D+ and D− is covered. This implies a unique coordinate to place a vertex in
D+.

Case 2. There exist one vertex in B−1 and one vertex in C+
2 .

Note that the maximal diameter of any possible region to place a vertex in D+ is
≤ 0.59. This region can be obtained by placing the vertex in C+

2 at the rightmost
coordinate and the vertex in B−1 at the lowest possible coordinate. Observe that
moving any of both vertices reduce the diameter of the region, since either the
topmost coordinate of the region moves down or the bottommost coordinate of
the region moves up (cf. Figure 19).

The distance from x2 to the center between the vertex in C+
2 and x1 is

√
3
2 and

thus any vertex in the top region has a ply radius of ≤ 0.61 any thus covers the
remaining region of D+ completely. The region below has a diameter of ≤ 0.34
and therefore there exists at most one vertex with ply radius ≥ 0.5.

Case 3. There exist one vertex in B−1 and one vertex in C+
1 .

Note that in any configuration the rightmost coordinate of D− and the leftmost
coordinate of D+ is covered by the ply disks of the vertex in B−1 and of the vertex
in C+

1 . Thus D+−
3 is covered in any case. All possible configurations result in

one of the following cases:

a) D+
2 and D−2 are covered.

Similar to Observation 4 there cannot be two vertices in D+
3 ∪D−3 .
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x1 x2

√
2

√
2A+

A−

B+

C−
B−1

C+
2

0.59
√
3
2

2

Fig. 19: The region with the maximal possible diameter in D+ whenever there exist
vertices in B−

1 and C+
2

b) Exactly one of the D2 is not covered completely and the center of (x1, x2) is
covered.
Thus there can be at most one vertex in either D+ or D−.

ut

This concludes Observation 8 saying whenever there exist vertices in B− and
C+ there exists at most one vertex in D+ ∪D−.

Observation 9. Whenever there exist one vertex in B− and one vertex in A+

either B+ or C+ is empty.

Proof. Any vertex in A+ has a ply radius of at least dist(B−,A+)
2 ≈ 1.68

2 .Thus
this vertex covers either B+ or C+ completely whether the vertex is closer to
B+ or C+ as presented in Figure 20. ut

In the next lemmas we distinguish the different cases about the number of ver-
tices placed below the edge (x1, x2).

Lemma 4. Whenever no vertex is below the edge (x1, x2) then n = 2 + |A+|+
|B+|+ |C+|+ |D+| ≤ 7.

Proof. By Observation 1, |B+| ≤ 1 and |C+| ≤ 1, by Observation 2, |A+| ≤ 1
and by Observation 3 |D+| ≤ 2. Thereby |A+| + |B+| + |C+| + |D+| ≤ 5 and
the lemma follows. ut

Lemma 5. Whenever exactly one vertex is below the edge (x1, x2) then n =
3 + |A+|+ |B+|+ |C+|+ |D+| ≤ 7.
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x1 x2

√
2

√
2A+

A−

B+

B−

C+

C−

D+

D−

1.68

0.83

Fig. 20: Any vertex in A+ has a ply radius of at least dist(B−,A+)
2

≈ 1.68
2

.Thus this
vertex covers either B+ or C+ completely whether the vertex is closer to B+ or C+.

Proof. Assume there exists an empty ply drawing of K8 with exactly one vertex
below (x1, x2). By Lemma 4 there have to be exactly five vertices above (x1, x2),
namely exactly one in A+, one in B+, one in C+ and two in D+.

By Observation 5 the vertex below cannot be placed in A−, by Observation
8 the vertex below cannot be placed in B− or C− and by Observation 7 the
vertex below cannot be placed in D−. This contradicts our assumption that Kn

with n ≥ 8 can be drawn with one vertex below (x1, x2). ut

Lemma 6. Whenever exactly two vertices are below (x1, x2) then n = 4+|A+|+
|B+|+ |C+|+ |D+| ≤ 7.

Proof. Assume there exists an empty ply drawing of Kn with n ≥ 8 there are
at least four vertices above (x1, x2). We will distinguish four cases about the
placement of the two vertices below.

Case 1. There exists one vertex in A−.

By Observation 1, |B+| ≤ 1 and |C+| ≤ 1, by Observation 5, |A+| = 0 and by
Observation 6, |D+| ≤ 1.

Thus whenever there exists one vertex in A−, n = 4 + |A+|+ |B+|+ |C+|+
|D+| ≤ 7 holds.

Case 2. A− is empty and there are exactly two vertices in D−.

By Observation 1, |B+| ≤ 1 and |C+| ≤ 1, by Observation 6, |A+| = 0, and by
Observation 4, |D+| ≤ 1.

Thus whenever there exists two vertices in D−, n = 4+ |A+|+ |B+|+ |C+|+
|D+| ≤ 7 holds.
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Case 3. A− is empty and there is exactly one vertex in D−.

There exists a vertex in either B− or in C−. Since both cases are symmetric we
assume without loss of generality there exists exactly one vertex in B−.

a) Assume there exists a vertex in A+:
By Observation 9 there exists at most one vertex in either B+ or C+. Fur-
thermore since there exists a vertex in D− we know by Observation 7 that
there exists at most one vertex in D+. Thereby n = 4+ |A+|+ |B+|+ |C+|+
|D+| ≤ 7 holds.

b) Assume A+ to be empty:
Assuming K8 is empty ply drawable and there exist four vertices above,
namely exactly one in B+, one in C+ and two in D+. By Observetion 8
there can be at most one vertex in D+ ∪D− which is already placed in D−.

This concludes the case where since n = 4+ |A+|+ |B+|+ |C+|+ |D+| ≤ 7 holds
in both subcases.

Case 4. There exist exactly one vertex in B− and exactly one vertex in C−.

Assuming K8 is empty ply drawable and there exist four vertices above. By
Observation 1, 2 and 3 there exists at least one vertex in either B+ or C+. By
Observetion 8 there can be at most one vertex in D+∪D−. Hence A+ must also
contain one vertex. By Observation 9 there exists at most one vertex in either
B+ or C+. Thereby n = 4 + |A+|+ |B+|+ |C+|+ |D+| ≤ 7 holds . ut

Lemma 7. Whenever exactly three vertices are below (x1, x2) then n = 5 +
|A+|+ |B+|+ |C+|+ |D+| ≤ 7.

Proof. Note that in any case there exists at least one vertex in either B− or
C−. We distinguish the following cases by the placement of the vertices below
(x1, x2).

Case 1. There exist three vertices below, namely in A−, in B− and in C−.

By Observation 5, |A+| = 0. B+ and C+ are empty by Observation 9 since there
exist vertices in B− and C−. Additionally there is at most one vertex in D+ by
Observation 6. Thereby n = 5 + |A+|+ |B+|+ |C+|+ |D+| ≤ 7 holds.

Case 2. There exist three vertices below, namely in A−, in D− and without loss
of generality in B−.

By Observation 5, |A+| = 0, by Observation 6 there exists at most one vertex
in D+.
Assuming that K8 is empty ply drawable there have to be three vertices above
namely exactly one in B+, exactly one in C+ and exactly one in D+. By Obser-
vation 8 there exists a long diagonal and thus |D+ ∪D−| ≤ 1 which contradicts
the case that there already exists one vertex in D−.
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Case 3. There exist exactly three vertices below, namely in B−, in C− and in
D−.

By Observation 8 whenever there exist a vertex in B+ or C+, D+ is empty since
there already exists a vertex in D−.

By Observation 9 whenever there exists a vertex in A+ either C+ or B+ is
empty. The remaining possible placements are:

1. two vertices in D+

2. one vertex in B+ and
(a) one vertex in A+

(b) one vertex in C+

3. one vertex in A+ and exactly one vertex in D+

Thereby there exist at most two vertices above (x1, x2) and n = 5 + |A+| +
|B+|+ |C+|+ |D+| ≤ 7.

Case 4. There exist three vertices below, namely two vertices in D− and without
loss of generality one vertex in B−.

By Observation 6 |A+| = 0, since there already exist two vertices in D−.
By Observation 8 |C+| = 0, since there already exist two vertices in D−.
By Observation 4 there is at most one more vertex in D+.
By Observation 1 there is at most one more vertex in B+.
Thus there exist at most two vertices above (x1, x2) and n = 5 + |A+|+ |B+|+
|C+|+ |D+| ≤ 7.

ut

The four lemmas conclude the proof of Theorem 4 since the placement of more
than 3 vertices below will be symmetric to placing the corresponding number of
vertices above.

Omitted proof of Theorem 6

In this section we give the omitted proof of Theorem 6:

Theorem 6. Graph K2,m with m ≥ 15 does not admit any empty-ply drawing.

Before stating the proof, we give some conditions for the vertices of an empty
ply drawing of a complete bipartite graph K1,X and then we extend these re-
quirements to K2,X , where X ≥ 1.

Given a complete bipartite graph, K1,X with X > 1, let u be the only vertex
of the first set, called V1, and let 2mu be the distance from u to its farthest vertex
(and so the radius of the ply disk of u). TheX vertices of the second set, called V2,
of an empty-ply drawing of K1,X have distance in the range R = [mu, 2mu] from
u. Following the proof of Theorem 3 we split R in two ranges Ru1

= [mu,
√

2mu]
and Ru2

= [
√

2mu, 2mu].
A condition for the vertices is given by the following lemma.
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Fig. 21: The minimum angular distance with respect to u of two vertices both with
distance in the same range [

√
2m, 2m] or [m,

√
2m] from u is 27.89◦, as shown by the

blue circular sector S. Thereby in any circular sector with ange < 27.89◦ there can be
at most 2 vertices iff exactly one is in [

√
2m, 2m] and exactly one is in [m,

√
2m].

Lemma 8. In an empty ply drawing of K1,X with X > 1 the angular distance
of any two vertices x1, x2 ∈ V2 drawn both in Ru1

, or Ru2
, is ≥ 27.89◦.

Proof. We prove the statement for Ru2
. The proof for Ru1

is analogous. Given
two vertices x1, x2 ∈ V2 in Ru2

drawn at distance 2mu and
√

2mu from u re-
spectively, (i.e. the maximum and the minimum distances from u) the triangle
formed by u, x1 and x2 has sides with length 2mu, mu and

√
2mu. Thus the

angle formed by the two sides incident to u is given by the following equation:

12 ·m2
u = (22 +

√
2
2 − 2 · 2 ·

√
2 · cos(αd)) ·m2

u

cos(αd) =
22 +

√
2
2 − 12

2 · 2 ·
√

2

αd = 27.89◦

It follows that two vertices drawn both in Ru2
(resp. Ru1

) and having angular
distance αd with respect to u have distance

√
2mu and 2mu (resp. mu and

√
mu)

from u. ut

Let S ∩Ru1 and S ∩Ru2 be the ranges of S, Lemma 8 implies that a circular
sectors S around u with angle α = (αd − ε)◦ contains at most one vertex per
range.

We now extend the property given in Lemma 8 to the case when V1 contains
two vertices, that is K2,X .
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Given a complete bipartite graph, K2,X with X > 1. Let, w.l.o.g., u, v ∈ V1
lying on a horizontal line, lh, at distance 1 from each other. The X vertices of
V2 of an empty-ply drawing are in Ruv1 = Ru1 ∩Rv1 and Ruv2 = RCuv1 (bounded
by 2 ∗ dist(u, v) from both u and v). (Figure 22).

u v
m

2m√
2m

Ruv2

Ruv1

lc

Fig. 22: The circles around u and v and the corresponding areas of Ruv1 and Ruv2 .

Let lc, the perpendicular bisector of (u, v), split the plane in the left half-plane
containing u and the right half-plane containing v. Each vertex xi ∈ V2, where
i = 1, . . . , |V2|, in the left (resp. right) half-plane has dist(u, xi) < dist(v, xi)
(resp. dist(u, xi) > dist(v, xi)) while exactly on the line dist(u, xi) = dist(v, xi).
It follows that the ply disks of the vertices in the same half-plane depend only
on either u or v.

Also, we define for u and v the cover disk of u with respect to v, Covu(v)
(and viceversa), as the area that contains the vertices xi ∈ V2with i = 1, . . . , |V2|,
adjacent to v whose ply disk has radius at least dist(xi,v)

2 and therefore its disk
covers v, i.e., drawing any vertex xi adjacent to v in this area violates the empty-
ply condition of the ratio of the incident edges.

We are now ready to prove the upper bound on the maximum number of
vertices in Ruv1 and Ruv2 .

Lemma 9. There are at most 10 vertices in Ruv2 .

Proof. We show that there can be at most 10 sectors in Ruv2 . Let w.l.o.g.
dist(u, v) = 1, for the property of an empty-ply drawing each vertex should
be drawn in the intersection area of two disks with radius 2. Since, as explained
above, the ply disks of the vertices in the same half-plane depend on either u
or v, the number of vertices for an empty-ply drawing depends on the number
of non-overlapping sectors starting from u (resp. v) that can be placed in the
right (resp. left) half-plane. It is easy to see that the maximum angle to place
the sectors is when the ply disks of u and v is 1, i.e. there is at least one vertex
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at distance 2 from u and v. In this case, m = 1 and Ruv2 = [
√

2, 2] and the
available angle to place the sectors for each vertex is given by the points of lc at
distance 2 from u and v that is 151.04◦ as shown by Figure 23. It follows that

the maximum number of vertices in Ruv2 is given by b d2β2e
α c = 10. ut
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Fig. 23: The maximum angle to place the sectors in Ruv2 is β2 = 151.04◦ that is when
the radii of the ply disks of both u and v is the maximum, i.e. 1.

Note that Lemma 8 implies that there is a sector with γ = (2β2)− (10α) =
302, 08− 278.9 = 23, 14◦ angle that is free from vertices.

Although the previous Lemma gives an upper bound of 10 sectors in Ruv2
and, each of them can contain at most 1 vertex per range, the actual number
of sectors that can be placed in Ruv1 is different since the angle in this range,
namely β1, is smaller.

Thus, we state the following Lemma.

Lemma 10. In the area Ruv1 there are at most 6 vertices.

Proof. Similar to the previous proof, the available angle from u and v in Ruv1
should be considered with respect to

√
2, to maximize the number of sectors that

can be placed. Also, differently from Ruv2 , in this range the available space for
the sectors is limited by the presence of Covu(v) and Covv(u) (these two disks
do not influence the available space for the sectors in Rab2 at least at distance
2 from u and v). Taking into account this limitation, the available angle per
each vertex u and v is β1 ≤ 41.41◦. The available space can be split in two non
intersecting parts: above and below lh. The number of sectors, and so vertices,
that can be placed in each of these parts is given by d 2β1

α e = d2.97e = 3 and so
there cannot be 4 vertices on either the top or the bottom side. It follows that
the number of vertices in Rab1 is limited to 6. ut
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Lemma 9 and 10 imply that K2,17 does not admit an empty-ply drawing.
However, in the following we show that drawing the vertices in Ruv1 and

Ruv2 the upper bound for the number of vertices of V2 for an empty-ply drawing
is smaller than 17.

Lemma 11. If Ruv2 contains exactly 10 vertices then Ruv1 contains at most 4
vertices.

Proof. If 10 vertices are drawn in Ruv2then m ∈ [ 1.882 , 1]. In the inner range, the

vertices have to lie in the intersection of the disks with radius
√

2m centered
in u and v and outside the of radius 1.88

2 with the same centers. Let lh divide
Ruv1 the part above and below lh. The ply disks of two vertices drawn one in
the upper part and the other in the lower part do not overlap, thus we can argue
about the two parts independently. Since the ply disk of any vertex drawn in
the upper, or lower, part covers entirely its bisector, that is a segment on lc, it
follows that in each part there can be at most 2 vertices (i.e., one the left and
one on the right of the bisector). It follows that there can be at most 4 vertices
in Ruv1 (2 in each part), if there are exactly 10 vertices in Ruv2 . ut
Lemma 12. If Ruv2 contains exactly 9 vertices then Ruv1 contains at most 5
vertices.

Proof. There exist 9 vertices in Ruv2then m ∈ [ 1.782 , 1]. If we draw three vertices

in the range [ 1.782 ,
√

2] there exists one vertex whose minimal distance to either
u or v is ≥ 1.33. Any vertex with distance ≥ 1.33 implies a cover-disk regarding
u and v which covers a sector of at least 45.44◦. This angle can not be used to
draw any vertex in the range [

√
2m, 2m]. Thus 3 vertices in the upper, or lower,

part of [m,
√

2m] imply at most 9 vertices. It follows that there cannot be 9
vertices in Ruv2 and 6 in Ruv1 . ut

Lemma 11 and 12 imply Theorem 6

Appendix B

Theorem 8. For no q ∈ (0, 1), rooted ternary trees admit empty-ply drawings
constructed in orthogonal fashion with shrink factor q, i.e. when the distance of
a vertex to its children is q times the distance to its parent.

Proof. Consider the sequence of centers v0, v1, . . . as shown in Fig. 24 with its
limit w. The Euclidean distance between v3 and w is:

|v3w| =
q3

1− q2
√

1 + q2 ⇒ |v1w| =
(
q − q3

1− q2
)√

1 + q2

If the following inequality is not satisfied for some scaling factor q ∈ (0, 1), then
for any ε > 0, infinitely many points of the sequence v0, v1, . . . will belong to
the ε-neighborhood of w, and consequently inside the disk centered at v1.

|v1w| =
(
q − q3

1− q2
)√

1 + q2 ≥ 1

2
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Fig. 24: The sequence of centers used in the proof of Theorem 8.

Since the function f(q) =
(
q − q3

1−q2

)√
1 + q2 − 1

2 is negative in (0, 1), we get

|v1w| < 1
2 . It follows that w lies inside the ply disk of v1. Consequently, infinitely

many points of the sequence v0, v1, . . . lie inside the ply disk of v1. ut
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