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Abstract. Knot and link diagrams are projections of one or more 3-
dimensional simple closed curves into lR2, such that no more than two10

points project to the same point in lR2. These diagrams are drawings of
4-regular plane multigraphs. Knots are typically smooth curves in lR3, so
their projections should be smooth curves in lR2 with good continuity and
large crossing angles: exactly the properties of Lombardi graph drawings
(defined by circular-arc edges and perfect angular resolution).15

We show that several knots do not allow Lombardi drawings. On the
other hand, we identify a large class of 4-regular plane multigraphs that
do have Lombardi drawings. We then study two relaxations of Lombardi
drawings and show that every knot admits a plane 2-Lombardi drawing
(where edges are composed of two circular arcs). Further, every knot20

is near-Lombardi, that is, it can be drawn as Lombardi drawing when
relaxing the angular resolution requirement by an arbitrary small angular
offset ε, while maintaing a 180◦ angle between opposite edges.

Fig. 1: Hand-made drawings of knots from the books of Rolfsen [14] (left), Li-
vingston [13] (middle), and Kauffman [11] (right).

1 Introduction

A knot is an embedding of a simple closed curve in 3-dimensional Euclidean25

space lR3. Similarly, a link is a collection of simple closed curves in lR3. A drawing
of a knot (link) (also known as knot diagram) is a projection of the knot (link)
to the Euclidean plane lR2 such that for any point of lR2, at most two points
of the curve(s) are mapped to it [6, 14, 15]. From a graph drawing perspective,
drawings of knots and links are drawings of 4-regular plane multigraphs that30
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contain neither loops nor cut vertices. Likewise, every 4-regular plane multigraph
without loops and cut vertices can be interpreted as a link. Unless specified
otherwise, we assume that a multigraph has no self-loops or cut vertices.

In this paper, we address a question that was recently posed by Benjamin
Burton: “Given a drawing of a knot, how can it be redrawn nicely without5

changing the given topology of the drawing?” We do know what a drawing of
a knot is, but what is meant by a nice drawing? Several graphical annotations
of knots and links as graphs have been proposed in the knot theory literature,
but most of the illustrations are hand-drawn; see Fig. 1. When studying these
drawings, a few desirable features become apparent: (i) edges are typically drawn10

as smooth curves, (ii) the angular resolution of the underlying 4-regular graph
is close to 90◦, and (iii) the drawing preserves the continuity of the knot, that is,
in every vertex of the underlying graph, opposite edges have a common tangent.

There already exists a graph drawing style that fulfills the requirements
above: a Lombardi drawing of a (multi-)graph G = (V,E) is a drawing of G15

in the Euclidean plane with the following properties:

1. The vertices are represented as distinct points in the plane
2. The edges are represented as circular arcs connecting the representations of

their end vertices (and not containing the representation of any other vertex);
note that a straight-line segment is a circular arc with radius infinity.20

3. Every vertex has perfect angular resolution, i.e., its incident edges are equi-
angularly spaced. For knots and links this means that the angle between any
two consecutive edges is 90◦.

A Lombardi drawing is plane if none of its edges intersect. Note that we are
particularly interested in plane Lombardi drawings, since crossings change the25

topology of the drawn knot.

Knot drawing software: Software for generating drawings for knots and links ex-
ists. One powerful package is KnotPlot [15], which provides several methods for
drawing knot diagrams. It contains a library of over 1,000 precomputed knots
and can also generate knot drawings of certain families, such as torus knots.30

KnotPlot also provides methods for drawing general knots based on the of the
underlying plane multigraph. By replacing every vertex by a 4-cycle, the multi-
graph becomes a simple planar 3-connected graph, which is then using Tutte’s
barycentric method [17]. In the end, the modifications are reversed and a dra-
wing of the knot is obtained with edges drawn as polygonal arcs. The author35

noticed that this method “... does not yield ‘pleasing’ graphs or knot diagrams.”
In particular, he noticed issues with vertex and angular resolution [15, pg. 102].
Another approach was used by Emily Redelmeier [1]. Here, every arc, crossing,
and face of the knot diagram is associated with a disk. The drawing is then
generated from the implied circle packing as a circular arc drawing. As a result40

of the construction, every edge in the diagram is made of three circular arcs with
common tangents at opposite edges. Since no further details are given, it is hard
to evaluate the effectiveness of this approach, although as we show in this paper,
three circular arcs per edge are never needed.
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Lombardi drawings: Lombardi drawings were introduced by Duncan et al. [8].
They showed that 2-degenerate graphs have Lombardi drawings and that all
d-regular graphs, with d 6≡ 2 (mod 4), have Lombardi drawings with all vertices
placed along a common circle. Neither of these results, however, is guaranteed
to result in plane drawings. Duncan et al. [8] also shows that there exist planar5

graphs that do not have plane Lombardi drawings, but restricted graph classes
(e.g., Halin graphs) do. In subsequent work, Eppstein [9, 10] showed that every
(simple) planar graph with maximum degree three has a plane Lombardi dra-
wing. Further, he showed that a certain class of 4-regular planar graphs (the
medial graphs of polyhedral graphs) also admit plane Lombardi drawings and10

he presented an example of a 4-regular planar graph that does not have a plane
Lombardi drawing. A generalization of Lombardi drawings are k-Lombardi dra-
wings. Here, every edge is a sequence of at most k circular arcs that meet at a
common tangent. Duncan et al. [7] showed that every planar graph has a plane 3-
Lombardi drawing. Related to k-Lombardi-drawings are smooth-orthogonal dra-15

wings of complexity k [4]. These are plane drawings where every edge consists
of a sequence of at most k quarter-circles and axis-aligned segments that meet
smoothly, edges are axis-aligned (emanate from a vertex either horizontally or
vertically), and no two edges emanate in the same direction. Note that in the
special case of 4-regular graphs, smooth-orthogonal drawings of complexity k20

are also plane k-Lombardi drawings.

Our Contributions: The main question we study here is motivated by the ap-
plication of the Lombardi drawing style to knot and link drawings: Given a
4-regular plane multigraph G without loops and cut vertices, does G admit a
plane Lombardi drawing with the same combinatorial embedding? In Sect. 2 we25

start with some positive results on extending a plane Lombardi drawing, as well
as composing two plane Lombardi drawings. In Sect. 3, by extending the results
of Eppstein [9,10], we show that a large class of multigraphs, including 4-regular
polyhedral graphs, does have plane Lombardi drawings. Unfortunately, there ex-
ist several small knots that do not have a plane Lombardi drawing. Section 430

discusses these cases but also lists a few positive results for small examples. In
Sect. 5, we show that every 4-regular plane multigraph has a plane 2-Lombardi
drawing. In Sect. 6, we show that every 4-regular plane multigraph can be drawn
with non-crossing circular arcs, so that the perfect angular resolution criterion
is violated only by an arbitrarily small value ε, while maintaining that opposite35

edges have common tangents.

2 General Observations

If a knot or a link has a plane Lombardi drawing, we call it a plane Lombardi
knot (link). We further call the property of admitting a plane Lombardi drawing
plane Lombardiness. If two vertices in a plane Lombardi drawing of a knot are40

connected by a pair of multi-edges, we denote the face enclosed by these two
edges as a lens.
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Property 1 (Property 2 in [7, 8]). Let u and v be two vertices with given posi-
tions that have a common, unplaced neighbor w. Let du and dv be two tangent
directions and let θ be a target angle. Let C be the locus of all positions for
placing w so that (i) the edge (u,w) is a circular arc leaving u in direction du,
(ii) the edge (v, w) is a circular arc leaving v in direction dv, and (iii) the angle5

formed at w is θ. Then C is a circle, the so-called placement circle of w.

Duncan et al. [7] further specify the radius and center of the placement circle
by the input coordinates and angles. For the special case that the two tangent
directions du and dv are symmetric with respect to the line through u and v,
and that the angle θ is 90◦ or 270◦, the corresponding placement circle is such10

that its tangent lines at u and v form an angle of 45◦ with the arc directions du
and dv. In particular, the placement circle bisects the right angle between du
(resp. dv) and its neighboring arc direction. Fig. 2 illustrates this situation.

There exist a number of operations that maintain the plane Lombardiness of
a 4-regular multigraph. Two knots A and B can be combined by cutting them15

open and gluing twice a pair of loose ends from A and B. This operation is
known as a knot sum A + B. Knots that cannot be decomposed into a sum of
two smaller knots are known as prime knots. By Schubert’s theorem, every knot
can be uniquely decomposed into prime knots [16]. The smallest prime knot is
the trefoil knot with three crossings or vertices; see Fig. 1(right). Rolfsen’s knot20

table1 lists all prime knots with up to ten vertices. The Alexander-Briggs-Rolfsen
notation [3,14] is a well established notation that organizes these knots by their
vertex number and a counting index, e.g., the trefoil knot 31 it listed as the first
(and only) knot with three vertices.

Theorem 1. Let A and B be two 4-regular multigraphs with plane Lombardi25

drawings. Let a be an edge of A and b an edge of B. Then the knot sum A+B,
obtained by connecting A and B along edges a and b, admits a plane Lombardi
drawing.

Sketch of Proof. The idea of the composition is sketched in Fig. 3. We first apply
Möbius transformations, rotations, and translations to the two drawings so that30

edges a and b can be aligned along a circle with infinite radius. This can be done
such that the drawings of A and B do not intersect after removing a and b. We
can now reconnect the two drawings into a single plane Lombardi drawing by
introducing two edges c and d along the straight line. ut

Another operation that preserves the plane Lombardiness is lens multiplica-35

tion. Let G = (V,E) be a 4-regular plane multigraph with a lens between two
vertices u and v. A lens multiplication of G is a 4-regular plane multigraph that
is obtained by replacing the lens between u and v with a chain of lenses.

Lemma 1. Let G = (V,E) be a 4-regular plane multigraph with a plane Lom-
bardi drawing Γ . Then, any lens multiplication G′ of G also admits a plane40

Lombardi drawing.

1 http://katlas.org/wiki/The_Rolfsen_Knot_Table

http://katlas.org/wiki/The_Rolfsen_Knot_Table
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Fig. 2: Placement circle
for neighbor w of u and
v in a 4-regular graph.
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Fig. 3: Adding two plane Lom-
bardi drawings of 4-regular
multigraphs.
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Fig. 4: Subdividing a
lens between u and v
by a new vertex p.

Sketch of Proof. Let f be a lens in Γ spanned by two vertices u and v as shown
in Fig. 4. We draw a bisecting circular arc b that splits the angles at u and v
into two 45◦ angles. Now we can draw any chain of lenses inside f by placing the
additional vertices on b. The resulting drawing is a plane Lombardi drawing. ut

3 Plane Lombardi Drawings via Circle Packing5

Recall that polyhedral graphs are simple planar 3-connected graphs, and that
those graphs have a unique (plane) combinatorial embedding. The (plane) dual
graph M ′ of a plane graph M has a vertex for every face of M and an edge bet-
ween two vertices for every edge shared by the corresponding faces in M . In the
“classic” drawing D(M,M ′) of a primal-dual graph pair (M,M ′), every vertex10

of M ′ lies in its corresponding face of M and vice versa, and every edge of M ′

intersects exactly its corresponding edge of M . Hence, every cell of D(M,M ′)
has exactly two such edge crossings and exactly one vertex of each of M and M ′

on its boundary. The medial graph of a primal-dual graph pair (M,M ′) has a
vertex for every crossing edge pair in D(M,M ′) and an edge between two verti-15

ces whenever they share a cell in D(M,M ′); see Fig. 5a. Every cell of the medial
graph contains either a vertex of M or a vertex of M ′ and every edge in the
medial graph is incident to exactly one cell in D(M,M ′).

Every 4-regular plane multigraph G can be interpreted as the medial graph
of some plane graph M and its dual M ′, where both graphs possibly contain20

multi-edges. If G contains no loops and cut vertices, then neither M nor M ′

contains loops. Eppstein [9] showed that if M (and hence also M ′) is polyhedral,
then G admits a plane Lombardi drawing. We show next how to extend this
result to a larger graph class. We only give a short sketch of the proof here. The
full proof, as well as an example of the algorithm is in Appendix B.25

Theorem 2. Let G = (V,E) be a biconnected 4-regular plane multigraph and
let M and M ′ be the primal-dual multigraph pair for which G is the medial
graph. If one of M and M ′ is simple, then G admits a plane Lombardi drawing
preserving its embedding.
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Fig. 5: (a)–(b) Modifications due to an edge addition and (c) a primal-dual circle
packing. The medial graph G is drawn solid, the primal M is drawn dotted, and
the dual M ′ is drawn dashed. The shaded area is the lens region l(g).
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g1
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Fig. 6: Two examples of a lens region `(g) resulting from `(g1) and `(g2): (a) con-
vex and (b) reflex. The lens regions of g1 and g2 are drawn as shaded areas, while
the one of g is the cross-hatched region.

Sketch of Proof. Assume w.l.o.g. that M is simple. If M (and hence also M ′)
is polyhedral, then G admits a plane Lombardi drawing Γ by Eppstein [9].
Moreover, Γ is embedding-preserving (up to Möbius transformation), as the
combinatorial embedding of M is unique (up to homeomorphism on the sphere).

If M is not 3-connected, we proceed in three steps. First, we augment M to a5

polyhedral graph Mp by iteratively adding p edges (any added edge splits a face
of size at least four into two faces of size at least three). During this process,
we also iteratively modify the dual graph and the medial graph as shown in
Fig. 5a–b.

Second, we apply Eppstein’s result to obtain a primal-dual circle packing10

of Mp and M ′p, together with a Lombardi drawing Γp of the medial graph Gp;
see Fig. 5c. Finally, we revert the augmentation process from the first step by
iteratively changing the plane Lombardi drawing Γp of Gp to a plane Lombardi
drawing Γ of G. A main ingredient for this last step is the following: In the
primal-dual circle packing of Mp and M ′p, every edge g of Γp lies in a region `(g)15

that is bounded by a primal and a dual circle. This region `(g) is interior-disjoint
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Fig. 7: If there is a multi-edge between vertices f and g in the primal, then there
is a multi-edge (u, v) or a separation pair u, v in the medial.

with the region `(g′) of any other edge g′ of Γp. When removing an edge from
the primal graph, a vertex is removed from the Lombardi drawing and the four
incident edges are replaced by two edges connecting the non-common endpoints
of the four edges. We show how to draw each new edge g that replaces g1 and g2
in a way that again has a uniquely assigned region `(g) that is interior-disjoint5

with the regions of all other edges; see Fig. 6 for a sketch. ut

We remark that this result is not tight: there exist 4-regular plane multi-
graphs whose primal-dual pair M and M ′ contain parallel edges that still admit
plane Lombardi drawings, e.g., knots 812, 814, 815, 816; see Fig. 17 in Appendix C.

We now prove that 4-regular polyhedral graphs are medial graphs of a simple10

primal-dual pair.

Lemma 2. Let G = (V,E) be a 4-regular polyhedral graph and let M and M ′

be the primal-dual pair for which G is the medial graph. If there is a multi-edge
in M or in M ′, then the corresponding vertices of G either have a multi-edge
between them or they form a separation pair of G.15

Proof. W.l.o.g., assume that there are two edges between vertices f and g in M .
Let u and v be the vertices of G that these two edges pass through; see Fig. 7.
The vertices f and g of M correspond to faces in the embedding of G that both
contain u and v. Hence, the removal of u and v from G disconnects G into two
parts: the part inside the area spanned by the two edges between f and g and20

the part outside this area. Both u and v have two edges in both areas, so either
there is a multi-edge between u and v, or there are vertices in both parts, which
makes u, v a separation pair of G. ut

Lemma 2 and Theorem 2 immediately give the following theorem.

Theorem 3. Let G = (V,E) be a 4-regular polyhedral graph. Then G admits a25

plane Lombardi drawing.

4 Positive and Negative Results for Small Graphs

We next consider all prime knots with 8 vertices or less. We compute plane
Lombardi drawings for those that have it and argue that such drawings do not
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Fig. 8: Knot 41 (left) has no Lom-
bardi drawing.
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cd
e
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Fig. 9: Knot 52 and a non-plane Lombardi
drawing.

exists for the others. We start by showing that no knot with a K4 subgraph is
plane Lombardi.

Lemma 3. Every 4-regular plane multigraph G that contains K4 as a subgraph
does not admit a plane Lombardi drawing.

Proof. Let a, b, c, d be the vertices of the K4. Every plane embedding of K4 has a5

vertex that lies inside the cycle through the other 3 vertices; let d be this vertex.
Since d has degree 4, it has another edge to either one of a, b, c, or to a different
vertex. In the former case, assume that there is a multi-edge between c and d.
In the latter case, by 4-regularity, there has to be another vertex of a, b, c that
is connected to a vertex inside the cycle through a, b, c; let c be this vertex. In10

both cases, c has two edges that lie inside the cycle through a, b, c.
Assume thatG has a Lombardi drawing. Since Möbius transformations do not

change the properties of a Lombardi drawing, we may assume that the edge (a, b)
is drawn as a straight-line segment as in Fig. 8b. Since both c and d are neighbors
of a and b, there are two corresponding placement circles by Property 1. In fact,15

since any two edges of a Lombardi drawing of a 4-regular graph must enclose an
angle of 90◦ and since a and b have “aligned tangents” due to being neighbors
themselves, the two placement circles coincide and a situation as shown in Fig. 8
arises. In particular, this means that in any Lombardi drawing of G the four
vertices must be co-circular. It is easy to see that we cannot draw the missing20

circular arcs connecting c and d: any such arc must either lie completely inside
or completely outside of the placement circle. Yet, the stubs for the two edges
between c and d point inside at c and outside at d. ut

The full proof for the following lemma is given in Appendix C.

Lemma 4. Knots 41 and 52 do not have plane Lombardi drawings.25

Sketch of Proof. For knot 41, the claim immediately follows from Lemma 3. For
knot 52 (see Fig. 9) we can argue that all five vertices must be co-circular. Unlike
knot 41 we can geometrically draw all edges of knot 52 as Lombardi arcs, see
the non-plane drawing in Fig. 9b. However, by carefully considering the smooth
chain of arcs a− c− e− d− b and their radii, we can prove that this path must30

self-intersect in any Lombardi drawing, so the claim follows. ut
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(a) (b) (c)

Fig. 10: Drawings of knot 41 which by Lemma 4 does not admit a plane Lombardi
drawing. (a) A smooth orthogonal drawing of complexity 2, (b) a different plane
2-Lombardi drawing, and (c) a plane ε-angle Lombardi drawing.

As the above lemma shows, even very small knots may not have a plane
Lombardi drawings. However, most knots with a small number of crossings are
indeed plane Lombardi. In Fig. 17 in Appendix C, we provide plane Lombardi
drawings of all knots with up to eight vertices except 41 and 52. Most of these
drawings can actually be obtained using the techniques from Sect. 2 and 3.5

Theorem 4. All prime knots with up to eight vertices other than 41 and 52 have
plane Lombardi drawings.

Note that Theorem 4 implies that each of these knots has a combinatorial
embedding that supports a plane Lombardi drawing. It is not true, however,
that any embedding admits a plane Lombardi drawing. In fact, the knot 75 has10

an embedding that cannot be drawn plane Lombardi; see details in Appendix C.

Theorem 5. There exists an infinite family of prime knots and links that have
embeddings that do not support plane Lombardi drawings.

5 Plane 2-Lombardi Drawings of Knots and Links

Since not every knot admits a plane Lombardi drawing, we now consider plane15

2-Lombardi drawings; see Fig. 10a for an example. Bekos et al [4] recently in-
troduced smooth orthogonal drawings of complexity k. These are drawings where
every edge consists of a sequence of at most k circular arcs and axis-aligned
segments that meet smoothly with horizontal or vertical tangents, and where
at every vertex, each edge emanates either horizontally or vertically and no two20

edges emanate in the same direction. For the special case of 4-regular graphs,
every smooth orthogonal drawing of complexity k is also a plane k-Lombardi
drawing. Alam et al. [2] showed that every plane graph with maximum degree 4
can be redrawn as a plane smooth-orthogonal drawing of complexity 2. Their al-
gorithm takes as input an orthogonal drawing produced by the algorithm of Liu25

et al. [12] and transforms it into a smooth orthogonal drawing of complexity 2.
We show how to modify the algorithm by Liu et al., to compute an orthogonal
drawing for a 4-regular plane multigraph and then use the algorithm by Alam
et al. to transform it into a smooth orthogonal drawing of complexity 2. Details
are given in Appendix D.30
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Theorem 6. Every biconnected 4-regular plane multigraph G admits a plane
2-Lombardi drawing with the same embedding.

6 Plane Near-Lombardi Drawings

Since not all knots admit a plane Lombardi drawing, in this section we relax
the perfect angular resolution constraint. We say that a knot (or a link) is near-5

Lombardi if it admits a drawing for every ε > 0 such that
1. All edges are circular arcs,
2. Opposite edges at a vertex are tangent;
3. The angle between crossing pairs at each vertex is at least 90◦ − ε.

We call such a drawing a ε-angle Lombardi drawing. Note that a Lombardi dra-10

wing is essentially a 0-angle Lombardi drawing. For example, the knot 41 does
not admit a plane Lombardi drawing, but it admits a plane ε-angle Lombardi
drawing, as depicted in Fig. 10b.

Let Γ be an ε-angle Lombardi drawing of a 4-regular graph. If each angle des-
cribed by the tangents of adjacent circular arcs at a vertex in Γ is exactly 90◦+ε15

or 90◦−ε, then we call Γ an ε-regular Lombardi drawing. Note that any Lombardi
drawing is a 0-regular Lombardi drawing.

We first extend some of our results for plane Lombardi drawings to plane
ε-angle Lombardi drawings. The following Lemma is a stronger version of The-
orem 2. The full proof is given in Appendix E.20

Lemma 5. Let G = (V,E) be a biconnected 4-regular plane multigraph and
let M and M ′ be the primal-dual multigraph pair for which G is the medial
graph. If one of M and M ′ is simple, then G admits a plane ε-regular Lombardi
drawing preserving its embedding for every 0◦ ≤ ε < 90◦.

Sketch of Proof. We first direct the edges such that every vertex has two inco-25

ming opposite edges and two outgoing opposite edges by We orient the edges
around each face that belongs to M in counter-clockwise order. We use the same
primal-dual circle packing approach as in Theorem 2 to obtain a drawing of G′,
but instead of using the bisection of the lens region, we draw every edge with
angles 45◦ + ε/2 and 45◦ − ε/2 around the source vertex in counter-clockwise30

order and around the target vertex in clockwise order. Whenever a vertex is
removed, an incoming and an outgoing edge of it is substituted by a new edge
between its neighbors, so the angles at the neighbors are compatible and the
new edge can inherit the direction of the old edges. ut

The following Lemmas is a stronger version of Lemma 1 and Theorem 1.35

Since the proofs do not rely on 90◦ angles, they can be immediately applied to
the stronger version. A formal proof of Lemma 6 is given in Appendix E.

Lemma 6. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle
Lombardi drawing Γ . Then, any lens multiplication G′ of G also admits a plane
ε-angle Lombardi drawing.40
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Fig. 11: The circular arc Cλu between ua
and ub on the placement circles of u and
the circular arc Cλv between vc and vd
on the placement circles of v.

(a) (b)

Fig. 12: The only biconnected 4-
regular multigraphs with at most 3
vertices. (a) plane Lombardi and (b)
plane ε-angle Lombardi drawings.

Lemma 7. Let A and B be two 4-regular plane multigraphs with plane ε-angle
Lombardi drawings. Let a be an edge of A and b an edge of B. Then the com-
position A + B obtained by connecting A and B along edges a and b admits a
plane ε-angle Lombardi drawing.

Let G = (V,E) be a 4-regular plane multigraph and let x ∈ V with ed-5

ges (x, a), (x, b), (x, c), and (x, d) in counter-clockwise order. A lens extension
of G is a 4-regular plane multigraph that is obtained by removing x and its
incident edges from G, and adding two vertices u and v to G with two edges
between u and v and the edges (u, a), (u, b), (v, c), (v, d). Informally, that means
that a vertex is substituted by a lens.10

Lemma 8. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle
Lombardi drawing Γ . Then, any lens extension of G admits a plane (ε+ε′)-angle
Lombardi drawing for every ε′ > 0.

Sketch of Proof. Let x ∈ V be the vertex that we want to perform the lens
extension on, such that we get the edges (u, a), (u, b), (v, c), (v, d) in the obtained15

graph G′. Let α be the angle between the tangents of (x, a) and (x, b) at x in Γ .
Since Γ is a plane ε-angle Lombardi drawing, we have that α ≤ 90◦+ε. Further,
the angle between the tangents of (x, c) and (x, d) at x in Γ is also α, while the
angles between the tangents of (x, b) and (x, c) at x and between the tangents
of (x, d) and (x, a) at x are both 180◦−α. We apply the Möbius-transformation20

on Γ that maps the edges (x, a) and (x, d) to straight-line segments and a lies
on the same y-coordinate and to the right of x; hence, d lies strictly below x.

We aim to place v such that the angle between the arcs (v, c) and (v, d) is
α+λ for some 0 < λ ≤ ε′, which we will show how to choose later. We have fixed
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ports at c and d and a fixed angle α+λ at v. According to Property 1, all possible
positions of v lie on a circle through c and d. Note that the circle through c, d,
and x describes all possible positions of neighbors of c and d with angle α. Since
the desired angle gets larger, the position circle for v contains a point vd on the
straight-line edge (x, d) and a point vc on the half-line starting from x with the5

angle of the port used by the arc (x, c); see Fig. 11. We denote by Cλv the circular
arc between vc and vd on the placement circle of v that gives the angle α+λ at v.
We use the same construction for u to obtain the circular arc Cλu between ua
and ub. Since the drawing of G is plane, there exists some non-empty region in
which we can move x, such that the arcs (x, a), (x, b), (x, c), (x, d) are drawn with10

the same ports at a, b, c, d and do not cross any other edge of the drawing. We
choose λ as the largest value with 0 < λ ≤ ε′ such that the two circular arcs Cu
and Cv lie completely inside this region.

We show how to find a pair of points on Cλv and Cλu such that we can connect
them via a lens in Appendix E ut15

Lemma 9. Every 4-regular plane multigraph with at most 3 vertices admits a
plane ε-regular Lombardi drawing for every 0 ≤ ε < 90◦.

Proof. There are only two 4-regular multigraphs with at most 3 vertices and each
of them has a plane Lombardi drawing as depicted in Fig. 12a. For some 0◦ <
ε < 90◦, we can obtain a plane ε-regular Lombardi drawing by simply making20

the circular arcs larger or smaller, as depicted in Fig. 12b. ut

We are now ready to present the main result of this section. The proof boils
down to a large case distinction using the tools developed in the previous dis-
cussion. We split the original graph into biconnected components and then use
Lemma 9 and 5 as base cases. With the help of lens extensions, lens multi-25

plications, and knot sums we can combine the “near-Lombardi” drawings of
the biconnected graphs to generate an “near-Lombardi” drawing of the original
graph. As a consequence, ever knot is near-Lombardi. The full proof is given in
Appendix E.

Theorem 7. Let G = (V,E) be a biconnected 4-regular plane multigraph and30

let ε > 0. Then G admits a plane ε-angle Lombardi drawing.
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A Additional Material for Section 2

Theorem 1. Let A and B be two 4-regular multigraphs with plane Lombardi
drawings. Let a be an edge of A and b an edge of B. Then the knot sum A+B,
obtained by connecting A and B along edges a and b, admits a plane Lombardi
drawing.5

Proof. We first apply a Möbius transformation to the plane Lombardi drawings
of A and B so that in the resulting drawings the given edges a and b are drawn
as straight edges passing through the point at infinity, i.e., they are complements
of line segments on an infinite-radius circle; see Fig. 3. Next, we rotate and align
both of these drawings so that edges a and b are collinear and the subdrawings10

obtained by removing edges a and b do not intersect. In the final step, we remove
both a and b and reconnect their vertices by two new edges c and d connecting
the two drawings, one being a line segment and the other passing through in-
finity. Since Möbius transformations preserve planarity and Lombardiness and
our construction does not introduce any edge crossings, the resulting drawing is15

a plane Lombardi drawing. Another Möbius transformation may be applied to
remove the edge through infinity. ut

Lemma 1. Let G = (V,E) be a 4-regular plane multigraph with a plane Lom-
bardi drawing Γ . Then, any lens multiplication G′ of G also admits a plane
Lombardi drawing.20

Proof. Let f be a lens in Γ spanned by two vertices u and v. We denote the two
edges bounding the lens as e1 and e2. The angle between e1 and e2 in both end-
vertices is 90◦. We define the bisecting circular arc b of f as the unique circular
arc connecting u and v with an angle of 45◦ to both e1 and e2; see Fig. 4.

Let p be the midpoint of b. If we draw circular arcs from both u and v25

to p that have the same tangents as e1 and e2 in u and v, then these four arcs
meet at p forming angles of 90◦. Furthermore, each such arc lies inside lens f
and hence does not cross any other arc of Γ . The resulting drawing is thus a
plane Lombardi drawing of a 4-regular multigraph that is derived from G by
subdividing the lens f with a new degree-4 vertex.30

By repeating this construction inside the new lenses, we can create plane
Lombardi drawings that replace lenses by chains of smaller lenses. ut

B Additional Material for Section 3

B.1 Proof of Theorem 2

Theorem 2. Let G = (V,E) be a biconnected 4-regular plane multigraph and35

let M and M ′ be the primal-dual multigraph pair for which G is the medial
graph. If one of M and M ′ is simple, then G admits a plane Lombardi drawing
preserving its embedding.
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Proof. Assume w.l.o.g. that M is simple. If M (and hence also M ′) is polyhedral,
then G admits a plane Lombardi drawing Γ by Eppstein [9].

It remains to show that Γ preserves the embedding of G. The drawing Γ is
constructed in the following way: Consider a primal-dual circle packing C(M,M ′)
of (M,M ′) which exists due to Brightwell and Schreinerman [5]. The plane Lom-5

bardi drawing Γ of G then is essentially the Voronoi diagram of C(M,M ′). As
the combinatorial embedding of M and M ′ is unique up to homeomorphism on
the sphere, there exists a Möbius transformation τ such that the circle packing
τ(C(M,M ′)) has the same unbounded face as D(M,M ′). Hence, Γ is a plane
Lombardi drawing of G that preserves its combinatorial embedding.10

Now assume that M is not 3-connected. As a first step, we iteratively extend
M = M0 by adding p edges until we obtain a polyhedral graph Mp. During
this process, we also iteratively adapt the dual graph and the medial graph;
see Fig. 13 for an illustration. Let Mi+1 be the graph obtained from Mi by
adding edge e to Mi. The edge e splits a face f of Mi with at least four incident15

vertices into two faces f1 and f2 with at least three incident vertices each. In M ′i ,
the according vertex f ′ is split into two vertices f ′1 and f ′2. The edges incident
to f ′ are partitioned into edges incident to f ′1 and f ′2 and an additional edge
between f ′1 and f ′2 is added. In Gi, the edges inside the face f of Mi form a cycle
that connects every pair of edges in Mi that is incident along the boundary20

of f . When e is added, exactly two edges g1, g2 of Gi are intersected by e. To
obtain Gi+1, the edges g1 and g2 are replaced by four new edges, where each
new edge has the new crossing between e and (f ′1, f

′
2) as one endpoint and one

of the four endpoints of g1 and g2, respectively, as the other endpoint.

In the second step, we apply the result of Eppstein [9] to obtain a plane Lom-25

bardi drawing Γp of Gp together with a primal-dual circle packing C(Mp,M
′
p).

Before going into the third step, the iterative removal of the edges that were
added in the first step, let us consider the structure obtained from the second
step in more detail; see Fig. 13 (bottom right) and Fig. 5c. For an edge g of Gp,
consider the unique vertex m(g) ∈ Mp that lies in a cell of Gp incident to g.30

Note that g has its endpoints on two edges incident to m(g) and adjacent in
their order around m(g). Let these edges be (m(g),m1(g)) and (m(g),m2(g)),
respectively. Let d(g), d1(g), and d2(g) be the disks in C(Mp) corresponding
to m(g), m1(g), and m2(g), respectively. Then in Γp, the circular arc c(g) cor-
responding to g lies in the interior2 of the disk d(g) and has its endpoints on35

the touching points of d(g) with d1(g) and d2(g), respectively. These touching
points are consecutive along the boundary of d(g). Further, there is a disk d′(g)
in C(M ′p) whose boundary intersects the boundary of d(g) exactly in the end-
points of c(g). The intersection of d(g) and d′(g) contains c(g) in its interior. The
circles ∂d(g) and ∂d′(g) intersect with right angles and c(g) bisects the angles40

at both intersections. We call d(g) ∩ d′(g) the lens region `(g) of g. For any two
edges g1 and g2 of Γp, the according lens regions `(g1) and `(g2) are interior-
disjoint. The lens regions of the edges incident to the face in Γp corresponding

2 Here, interior is meant w.r.t. the circle packing. Note that a circle could also be
inverted, that is, contain the unbounded face.
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to m(g) cover the whole boundary of d(g) and the endpoints of those regions
appear in the same cyclic order as the according edges in Mp.

In the third step, we iteratively remove the edges that were added in the first
step, by this constructing a sequence of plane Lombardi drawings Γi for Gi, for
i = p − 1, . . . , 0; see Fig. 14 for an example. For any edge g of Gi, consider the5

unique vertex m(g) ∈ Mi that lies in a cell of Γi incident to g, with endpoints
on edges (m(g),m1(g)) and (m(g),m2(g)) of Mi, respectively. Let d(g), d1(g),
and d2(g) be the disks in C(Mp) corresponding to m(g), m1(g), and m2(g), re-
spectively, and let c(g) be the circular arc in Γi corresponding to g. We keep the
following invariants for all edges g of the drawing Γi: (i) c(g) lies in the disk d(g)10

and has its endpoints on the touching points of d(g) with d1(g) and d2(g), re-
spectively. (ii) There is a disk d′(g) whose boundary intersects the boundary
of d(g) exactly in d(g)∩ d1(g) and d(g)∩ d2(g), such that c(g) bisects one of the
two regions d(g) ∩ d′(g) and d(g) ∩R2 \ d′(g), which we call its lens region `(g).
(iii) For any two edges g1 and g2 of Gi, the lens regions `(g1) and `(g2) are15

interior-disjoint. (iv) The lens regions of the edges incident to the face in D(Gi)
corresponding to m(g) cover the whole boundary of d(g) and the endpoints of
those regions appear in the same cyclic order as the according edges in D(Mi).

Obviously, those invariants are fulfilled by Γp. Hence, assume that they are
also fulfilled for Γi+1, and consider the removal of the edge e = (v1, v2) from Mi+120

to obtain Mi. In the medial graph Gi+1, the edge e corresponds to four edges
sharing the vertex corresponding to e, and there are two unique faces corre-
sponding to v1 and v2, respectively. Each of those has two of the edges of Gi+1

corresponding to e as consecutive edges along the face. Let g1 and g2 be those
consecutive incident edges on the face of Gi+1 corresponding to v1. Note that25

their non-shared endpoints lie on the edges (v1, v3) and (v1, v4), respectively,
where v3 and v4 are consecutive in the cyclic order around v1 in Mi. Further,
note that, when removing e from Mi+1, we have to replace g1 and g2 by an edge g
connecting their non-shared endpoints. For every j ∈ {1, 2, 3, 4}, let d(vj) be the
disk of C(Mp) that corresponds to the vertex vj of Mi ⊂ Mp (note that with30

the notation from the invariants, d(v1) = d(g1) = d(g2)). Next, consider c(g1)
and c(g2) in the drawing Γi+1. By our invariants, c(g1) and c(g2) lie in their lens
regions `(g1) and `(g2), which are consecutive along the boundary of d(v1). The
only common point of `(g1) and `(g2) is the touching point of d(v1) and d(v2).
The other endpoints of c(g1) and c(g2) are the touching points d(v1) ∩ d(v3)35

and d(v1)∩ d(v4), respectively. Further, the boundary of d(v1) is completely co-
vered by lens regions which are all pairwise non-intersecting and bounded by
circles intersecting ∂d(v1) in right angles. We replace c(g1) and c(g2) by the cir-
cular arc c(g) that has as its endpoints at the touching points d(v1)∩ d(v3) and
d(v1)∩d(v4) and is tangent to c(g1) and c(g2), respectively, in its endpoints. We40

define the lens region `(g) as the unique region that contains `(g1) and `(g2) and
is the intersection of d(v1) with the (according side of the) unique disk d′(g) for
which ∂d′(g) intersects ∂d(v1) at a right angle in the endpoints of c(g); see Fig. 6.

Note that `(g) does not intersect the interior of any other lens region: for
the lens regions outside d(v1), this is trivial. For the ones inside d(v1), it follows45
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from continuous transformation of the bounding circle ∂d′(g) to the bounding
circle of the other lens. Hence, after repeating the analogous construction for
the two other edges in Gi+1 needed to be replaced when removing e from Mi+1,
namely the ones that are incident to the face corresponding to v2 in D(Gi+1),
we obtain a plane Lombardi drawing Γi that again fulfills our four invariants,5

which completes the proof. ut

B.2 Drawing Knots 51, 62, 77, and 818 via Circle Packing

m

g

m1

m2

Fig. 13: Extension of the primal graph (dotted) of knot 51 to the square pyramid
and its dual (dashed). The medial graph in the top right is the knot 62, the
medial graph in the bottom left is the knot 77, and the medial graph in the
bottom right is the knot 818.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14: (a) A circle packing for the square pyramid (dotted) and its dual (das-
hed), and a plane Lombardi drawing for the medial graph 818 (solid); (b) elimina-
ting an edge of the primal and the plane Lombardi drawing of 77; (c) eliminating
an edge of the primal; (d) the plane Lombardi drawing of 62; (e) eliminating an
edge of the primal; (f) the plane Lombardi drawing of 51.
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C Additional Material for Section 4

Lemma 4. Knots 41 and 52 do not have plane Lombardi drawings.

Proof. For knot 41, the claim immediately follows from Lemma 3.
Knot 52 again has the property that all five vertices must be co-circular in

any Lombardi drawing. To see this, we first consider the four vertices a, b, c, d5

in Fig. 9. Regardless of the placement of a and b, we observe that c and d are
both adjacent to a and b and need to enclose an angle of 90◦ in the triangular
face with a and b. This situation was already discussed in Lemma 3 and yields a
circle C containing a, b, c, d; see Fig. 8. The final vertex, e, is adjacent to c and d
so that we can determine the placement circle for e with respect to c and d. As10

we know from Lemma 3, the two arc stubs of d to be connected with e form
angles of 45◦ with C and point outwards. Conversely, the two arc stubs of c form
angles of 45◦ with C and point inwards. If we take any point p on C and draw
circular arcs from the stubs of c and d to p, the four arcs meet at 90◦ angles
in p. These are precisely the angles required at vertex e and hence C is in fact15

the unique placement circle for e by Property 1. This implies that actually all
five vertices of 52 must be co-circular in any Lombardi drawing.

Unlike knot 41, it is geometrically possible to draw all edges as Lombardi arcs;
see Fig. 9b. However, as we will show, no plane Lombardi drawing of knot 52
exists. By an appropriate Möbius transformation, we may assume that all five20

vertices are collinear on a circle of infinite radius. Moreover, to avoid crossings,
the order along the line is either a, b, c, e, d or a, b, d, e, c (modulo cyclic shifts
and reversals). Since both cases are symmetric, we restrict the discussion to the
first one. As a further simplification, we initially assume that a and b are placed
on the same position such that the lens between a and b collapses; see Fig. 15.25

a = b

c

e

d

m1

m2

m3

m4

r1
r2

r3
r4

`

a1

a2

a3

a4

Fig. 15: Knot 52 has no plane Lombardi drawing.

This drawing consists of two intertwined 4-cycles, which intersect the line `
at angles of 45◦. We argue that the 4-cycle depicted in Fig. 15 cannot be
drawn as a simple cycle without self intersections. We consider the four cen-
ters m1,m2,m3,m4 of the circular arcs a1, a2, a3, a4 and their radii r1, r2, r3, r4.
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52

(a)

?

(b)

L6a1

(c)

75

(d)

Fig. 16: A family of non-Lombardi knots and links.

Due to the fact that adjacent arcs meet on ` at an angle of 45◦ and have the
same tangent, the four centers form the corners of a rectangle R with side lengths
r1 + r2 and r3 + r2. We can further derive that r4 − r3 = r1 + r2. Let δ be the
length of a diagonal of R. For the arcs a1 and a3 to be disjoint, we require
δ > r1 + r3. For a2 and a4 to be disjoint, we require δ < r4 − r2. But since5

r4 − r2 = r1 + r3, this is impossible and the 4-cycle must self-intersect.
Finally, if we move b by some ε > 0 away from a and towards c, this will only

decrease the radius r4 and thus introduce proper intersections in the drawing.
Thus, knot 52 has no plane Lombardi drawing. ut

Theorem 5. There exists an infinite family of prime knots and links that have10

embeddings that do not support plane Lombardi drawings.

Proof. Consider again the knot 52 (Fig. 16a). By Lemma 4, it has no Lombardi
drawing. We claim that if we duplicate the bottom vertex and detach the two
copies completely, the resulting graph (using four stubs to ensure the correct
angular resolution) still has no plane Lombardi drawing (Fig. 16b). As a re-15

sult, we can construct an infinite family of forms of knots and links without
plane Lombardi drawings. The first two smallest members of this family are the
link L6a1, consisting of two interlinked figure-8’s (Fig. 16c), and the knot 75
(Fig. 16d). Note, however, that 75 has a different embedding that does have a
plane Lombardi drawing; see Fig. 17. ut20
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31 51 61 62 63

71 72 73 74 75

76 77 81 82 83

84 85 86 87 88

89 810 811 812 813

814 815 816 817 818

819 820 821

Fig. 17: Plane Lombardi drawings of all prime Lombardi knots up to 8 vertices.
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D Omitted Proofs from Section 5

Theorem 6. Every biconnected 4-regular plane multigraph G admits a plane
2-Lombardi drawing with the same embedding.

Proof. The algorithm of Alam et al. [2] takes as input an orthogonal drawing
produced by the algorithm of Liu et al. [12] and transforms it into a smooth5

orthogonal drawing of complexity 2. The drawings by Liu et al. have the property
that every edge consists of at most 3 segments (except at most one edge that
has 4 segments), and it contains no S-shapes, that is, it contains no edge that
consists of 3 segments where the bends are in opposite direction. To show this
theorem, we only have to show that we can apply the algorithm of Liu et al. to10

4-regular plane multigraphs to produce a drawing with the same property.
Liu et al. first choose two vertices s and t and compute an st-order of the

input graph. An st-order is an ordering (s = 1, 2, . . . , n = t) of the vertices such
that every j (2 < j < n−1) has neighbors i and k with i < j < k. We can obtain
an st-order for a multigraph by removing any duplicate edges. Liu et al. then15

direct all edges according to the st-order from a vertex with lower st-number to
a vertex with higher st-number.

According to the rotation system implied by the embedding of the input
graph, Liu et al. then assign a port to every edge around a vertex such that every
vertex (except t) has an outgoing edge at the top port, every vertex (except s)20

has an incoming edge at the top port, every vertex has an outgoing edge at the
right port if and only if it has at least 2 outgoing edges, and every vertex has
an incoming edge at the left port if and only if it has at least 2 incoming edges.
They further make sure the edge that uses the bottom port at s is incident to the
vertex r with st-number 2, and that the edge (s, t), if it exists, uses the left port25

at s and the top port at t; this edge is the only one drawn with 4 segments, but
can still be transformed into a smooth orthogonal edge of complexity 2 by Alam
el al. . They place the vertices s and r on the y-coordinate 2 and every other
vertex on the y-coordinates equal to their st-number. The shape of the edges is
then implied by the assigned ports at their incident vertices. By placing vertices30

that share an edge with a bottom port and a top port above each other, there can
be no S-shapes with two vertical segments, but there can still be S-shapes with
two horizontal segments if an edge uses a left port and a right port. To eliminate
these S-shapes, the consider sequences of S-shapes, that is, paths in the graphs
that are drawn only with S-shapes, and move the vertices vertically such that35

they all lie on the same y-coordinate. Up to the elimination of S-shapes, every
step of the algorithm can immediately applied to multigraphs. We choose s and t
as vertices on the outer face of the given embedding such that the edge (s, t)
exists. We claim that then no multi-edge can be drawn as an S-shape.

Let u and v be two vertices in G with at least two edges e1 and e2 between40

them. W.l.o.g., let u have a lower st-number than v. Then both e1 and e2 are
directed from u to v. If u = s and v = r, then both vertices are placed on the
same y-coordinate, so there can be no S-shape between them. If u = s and v = t,
then there is an edge that uses the left port at u and the top port at v; since all
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multi-edges have to be consecutive around u and v, there can be no edge between
them that uses a left port and a right port. Otherwise, assume that e2 is the
successor of e1 in counter-clockwise order around u (and hence the predecessor
of e1 in counter-clockwise order around v). If e1 uses the right port at u and the
left port at v, then e2 has to use the top port at v, which cannot occur by the5

port assignment. If e1 uses the left port at u and the right port at v, then e2 has
to use the bottom port at u, which also cannot occur by the port assignment.
Thus, neither e1 nor e2 is drawn as an S-shape and every sequence of S-shapes
consists only of simple edges. Hence, we can use the algorithm of Liu et al. to
produce an orthogonal drawing with the desired property for every 4-regular10

plane multigraph and then use the algorithm of Alam et al. to transform it into
a smooth complexity drawing of complexity 2 which is also a plane 2-Lombardi
drawing. ut

E Omitted Proofs from Section 6.

Lemma 5. Let G = (V,E) be a biconnected 4-regular plane multigraph and15

let M and M ′ be the primal-dual multigraph pair for which G is the medial
graph. If one of M and M ′ is simple, then G admits a plane ε-regular Lombardi
drawing preserving its embedding for every 0◦ ≤ ε < 90◦.

Proof. We use the same algorithm as for the proof of Theorem 2 with a slight
modification. We first seek to direct the edges such that every vertex has two20

incoming opposite edges and two outgoing opposite edges. Let M and M ′ be
the primal-dual pair corresponding to the medial graph G. Every face in G
corresponds to a vertex either in M or in M ′; we say that the face belongs to M
or M ′. We orient the edges around each face that belongs to M in counter-
clockwise order. Every edge in G lies between a face that belongs to M and25

a face that belongs to M ′, so this gives a unique orientation for every edge.
Further, the faces around any vertex belong to M , to M ′, to M , and to M ′

in counter-clockwise order. Hence, the edges around any vertex are outgoing,
incoming, outgoing, and incoming in counter-clockwise order, which gives us the
wanted edge orientation.30

We use the same primal-dual circle packing approach to obtain a drawing
of G′, but instead of using the bisection of the intersection of a primal and a dual
circle, we use a circular arc with a different angle; see Fig. 18a. Let e = (u, v) be
an edge of G′ directed from u to v, and let l(e) be the lens region of e between the
primal-dual circles d(e) and d′(e). W.l.o.g., assume that the 90◦ angle inside l(e)35

is between d′(e) and d(e) in counter-clockwise order around u. In the proof of
Theorem 2, we would draw e as a bisection of l(e). We draw e that the angle
between d′(e) and (u, v) at u is 45◦+ ε/2 and the angle between e and d(e) at u
is 45◦ − ε/2.

Informally, this means that all outgoing edges at a vertex are “rotated” by ε/240

in counter-clockwise direction, and all incoming edges at a vertex are “rotated”
by ε/2 in clockwise direction compared to a plane circular-arc drawing of G′.
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(a) Drawing a directed edge e = (u, v)
between the circles d(e) and d′(e)
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w
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d′(e1)

d′(e2)

(b) Eliminating a vertex v and adding
the edge (u,w) inside the circle d(e1)

Fig. 18: Illustrations for the proof of Lemma 5.

Since opposite edges of a vertex u have the same direction with respect to u, they
are rotated by the same angle, so they are still tangent. Further, since adjacent
edges at u have a different direction with respect to u, the angle between them
is now either 90◦ + ε or 90◦ − ε.

We then use the same procedure as in Theorem 2 to eliminate vertices fromG′5

and obtain a plane ε-regular Lombardi drawing of G. In every step of this pro-
cedure, we eliminate a vertex v from G′ and add an edge between two pairs of
its adjacent vertices (without introducing self-loops); see Fig. 18b. Let u and w
be two neighbors of v in G′ such that we want to obtain the edge e = (u,w)
in G. W.l.o.g., assume that the edge e1 = (u, v) is directed from u to v in G′ and10

that the edge e2 = (v, w) is directed from v to w in G′. Following the proof of
Theorem 2, e1 lies in the lens region l(e1) between disks d(e1) and d′(e1), and e2
lies in the lens region l(e1) between disks d(e2) = d(e1) and d′(e2). Hence, u
and w lie on a common circle d(e1) of the primal-dual circle packing. Assume
that the 90◦ angle inside l(e1) is between d′(e1) and d(e1) in counter-clockwise15

order around u; the other case is symmetric. By the direction of the edges e1
and e2, the angle between e1 and d(e1) is 45◦−ε/2 in counter-clockwise around u
and the angle between d(e1) and e2 is also 45◦ − ε/2 in counter-clockwise di-
rection around w. Hence, we can draw the edge e as a circular arc inside d(e1)
with angle 45◦− ε/2 to d(e1) at both u and w. We keep the ports at both verti-20

ces and by directing the edge from u to w we also keep a direction of the edges
that satisfies the above property. Thus, we obtain a plane ε-regular Lombardi
drawing of G. ut

Lemma 6. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle
Lombardi drawing Γ . Then, any lens multiplication G′ of G also admits a plane25

ε-angle Lombardi drawing.
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Proof. Let f be a lens in Γ spanned by two vertices u and v. We denote the
two edges bounding the lens as e1 and e2. Let α ∈ [90◦ − ε, 90◦ + ε] be the
angle between e1 and e2 in both end-vertices. We define the bisecting circular
arc b of f as the unique circular arc connecting u and v with an angle of α/2 to
both e1 and e2. See Fig. 4 for an example.5

Let p be the midpoint of b. If we draw circular arcs a1 and a2 from both u
to p and circular arcs a3 and a4 from v to p that have the same tangents as e1
and e2 in u and v, then these four arcs meet at p such that the angle between a1
and a2 as well as the angle between a3 and a4 is α, whereas the angle between a1
and a4 and the angle between a2 and a3 is 180◦−α ∈ [90◦− ε, 90◦+ ε]. Further,10

each such arc lies inside lens f and hence does not cross any other arc of Γ .
The resulting drawing is thus a plane ε-angle Lombardi drawing of a 4-regular
multigraph that is derived from G by subdividing the lens f with a new degree-4
vertex.

By repeating this construction inside the new lenses we can create plane15

ε-angle Lombardi drawings that replace lenses by chains of smaller lenses. . ut

Lemma 8. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle
Lombardi drawing Γ . Then, any lens extension of G admits a plane (ε+ε′)-angle
Lombardi drawing for every ε′ > 0.

Proof. Let x ∈ V be the vertex that we want to perform the lens extension on20

such that we get the edges (u, a), (u, b), (v, c), (v, d) in the obtained graph G′.
Let α be the angle between the tangents of (x, a) and (x, b) at x in Γ . Since Γ is
a plane ε-angle Lombardi drawing, we have that α ≤ 90◦+ ε. Further, the angle
between the tangents of (x, c) and (x, d) at x in Γ is also α, while the angles
between the tangents of (x, b) and (x, c) at x and between the tangents of (x, d)25

and (x, a) at x are both 180◦ − α. We apply the Möbius-transformation on Γ
that maps the edges (x, a) and (x, d) to straight-line segments and a lies on the
same y-coordinate and to the right of x; hence, d lies strictly below x.

We aim to place v such that the angle between the arcs (v, c) and (v, d) is
α+λ for some 0 < λ ≤ ε′ which we will show how to choose later. We have fixed30

ports at c and d and a fixed angle α+λ at v. According to Property 1, all possible
positions of v lie on a circle through c and d. Note that the circle through c, d, x
describes all possible positions of neighbors of c and d with angle α. Since the
desired angle gets larger, the position circle for v contains a point vd on the
straight-line edge (x, d) and a point vc on the half-line starting from x with the35

angle of the port used by the arc (x, c); see Fig. 19a. We denote by Cλv the circular
arc between vc and vd on the placement circle of v that gives the angle α + λ
at v. We do the same construction for u to obtain the circular arc Cλu between ua
and ub.

Since the drawing of G is plane, there is some non-empty region in which we40

can move x such that the arcs (x, a), (x, b), (x, c), (x, d) are drawn with the same
ports at a, b, c, d and do not cross any other edge of the drawing. We choose λ
as the largest value with 0 < λ ≤ ε′ such that the two circular arcs Cu and Cv
lie completely inside this region.
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Fig. 19: (a) The circular arc Cλu between ua and ub on the placement circles
of u and the circular arc Cλv between vc and vd on the placement circles of v.
(b) Placing u on ua and v on vc gives βa = 0◦.

We now have to find a pair of points on Cλv and Cλu such that we can connect
them via a lens. The ports of the two arcs we seek to draw between u and v
lie opposite of the ports used by the arcs (u, a), (u, b), (v, c), and (v, d) We label
the ports at u and v as pau opposite of (u, a) at u, as pbu opposite of (u, b) at u,
as pcv opposite of (v, c) at v, and as pdv opposite of (v, d) at v. We have to find5

a pair of points on Cλu and Cλv such that these ports are “compatible”: Take a
point qu on Cλu and a point qv on Cλv and connect them by a segment Suv. Then
the angle βb between Suv and pbu has to be the same as the angle βc between Suv
and pcv, and the angle βa between Suv and pau has to be the same as the angle βd
between Suv and pdv. By construction, we have that βa + βb = 90◦ + α + λ10

and βc+βd = 90◦+α+λ, so it suffices to find a pair of points such that βa = βd.

Assume that v is placed on vc and u is placed on ua; see Fig. 19b. The
edge (x, a) is drawn as a straight-line segment, and the edge (x, c) uses the port
opposite of the one of (x, a). Hence, the segment Suv is a segment through x.
Furthermore, it uses exactly the port pau at u, so we have βa = 0◦. On the other15

hand, βd is strictly positive: The segment (x, d) enters x with an angle of γ =
180◦−α > 0◦ to the segment (x, v). Since v lies to the left of x, the angle described
between the tangent of the circular arc (v, d) at v and the segment (v, x) is strictly
larger than γ. Since βd is described by the same tangent and segment, we have
that βd = γ > 0◦.20

Now assume that v is placed on vd and u is placed on ub; see Fig. 20a.
The edge (x, d) is drawn as a straight-line segment, and the edge (x, b) uses
the port opposite of the one of (x, d). Hence, the segment Suv is a segment
through x. Furthermore, it uses exactly the port pdu at u, so we have βd = 0◦.
On the other hand, βa is strictly positive: The segment (x, a) enters x with25

an angle of δ = 90◦ + α > 0◦ to the segment (x, v). Since u lies above x,
the angle described between the tangent of the circular arc (u, a) at u and the
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Fig. 20: (a) Placing u on ub and v on vd gives βd = 0◦. (b) Placing u and v such
that βa = βd gives a lens between u and v with the desired angles.

segment (u, x) is strictly larger than δ. Since βd is described by the same tangent
and segment, we have that βd = δ > 0◦.

Hence, we have found a pair of points for u and v such that βa = 0◦ and βd =
γ > 0◦ and we have found a pair of points for u and v such that βa = δ > 0◦

and βd = 0◦. Since we can move u and v freely along the curves Cu and Cv5

between these pairs of points, βa can become any angle between 0◦ and δ and βd
can become any angle between 0◦ and γ. Thus, there has to exist some pair of
points for u and v such that βa = βd; see Fig. 20b. We choose this pair of points
and connect u and v by two circular arcs such that one of them uses the ports pau
and pdv and the other one uses the ports pbu and pcv. Note that the arcs (u, a)10

and (u, b) are now drawn the same way as if we moved x onto the determined
position of u and the arcs (v, c) and (v, d) are now drawn the same way as if we
moved x onto the determined position of v. Hence, by the choice of λ, they do
not introduce any crossing and thus the drawing is plane. ut

Theorem 7. Let G = (V,E) be a biconnected 4-regular plane multigraph and15

let ε > 0. Then G admits a plane ε-angle Lombardi drawing.

Proof. If G has at most 3 vertices, then we obtain a plane Lombardi drawing
of G by Lemma 9. So assume that G is a biconnected 4-regular plane graph
with n ≥ 4. We seek to draw G by recursively by splitting it into smaller graphs.
We prove our algorithm by induction on the number of vertices; to this end,20

suppose that every biconnected 4-regular plane graph with at most n−1 vertices
admits a plane ε′-angle Lombardi drawing for every ε′ > 0; this holds initially
for n = 4. We proceed as follows.
Case 1. G is polyhedral. In this case, we can draw it plane Lombardi using
Theorem 2.25

Case 2. G contains a multilens, that is, a sequence of lenses between the
vertices u1, . . . , uk with k ≥ 2. We contract the lenses to a single lens, that is, we
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Fig. 21: Illustrations for the proof of Theorem 7.

remove the vertices u2, . . . , uk−1 and their incident edges from G and add two
edges between u1 and uk to form a new graph G′; see Fig. 21a. This operation
is essentially a reverse lens multiplication and introduces no self-loops. It also
preserves biconnectivity since u1 and uk form a separation pair in G, so any
cutvertex in G′ would also be a cutvertex in G. Hence, G′ is a biconnected 4-5

regular plane graph with n− k + 1 ≤ n− 1 vertices and by induction admits a
plane ε-angle Lombardi drawing. Furthermore, G is a lens multiplication of G′

on the lens (u1, uk), so we can use Lemma 6 to obtain a plane ε-angle Lombardi
drawing of G.

Case 3. G contains a lens between two vertices u and v, but it contains no10

multilens. We consider three subcases based on the number of edges between u
and v in G.

Case 3.1. There are four edges between u and v in G. Since G is 4-regular,
it consists exactly of these two vertices and four edges and can be drawn by
Lemma 9.15

Case 3.2. There are three edges between u and v in G; see Fig. 21b. Then there
exists also some edge (u, u′) and some edge (v, v′) inG. SinceG is biconnected, we
have u′ 6= v′; otherwise, it would be a cutvertex. We remove u and v from G and
add an edge between u′ and v′ to form a new graph G′. This operation preserves
biconnectivity as u′ and v′ form a separation pair in G and it introduces no20

self-loops because v 6= v′. Hence, the graph G′ is a biconnected 4-regular plane
graph with n − 2 vertices and by induction admits a plane ε-angle Lombardi
drawing. Let G′′ be the graph that consists of u and v and four multi-edges
between them. This graph has a plane ε-regular Lombardi drawing by Lemma 9.
Furthermore, G can be obtained by adding G′ and G′′ along the edge (u′, v′)25

of G′ and one of the edges of G′′. Using Lemma 7, we can obtain a plane ε-angle
Lombardi drawing of G.

Case 3.3. There are two edges between u and v in G. We consider two subcases.

Case 3.3.1. Removal of u and v from G preserves connectivity; see Fig. 22a.
We contract u and v to a new vertex: we remove them from G and add a new30

vertex x that is connected to the neighbors of u and v different from u and v
to form G′. This operation preserves biconnectivity: Since G is biconnected, the
only cutvertex in G′ can be x; but since the removal of u and v from G preserves
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Fig. 22: Illustrations for Case 3.3 in the proof of Theorem 7.

connectivity, so does the merged vertex x. Since there are exactly two edges
between u and v, the new vertex x has degree 4. Hence, G′ is a biconnected 4-
regular plane graph with n−1 vertices and by induction admits a plane ε/2-angle
Lombardi drawing. Furthermore, G can be obtained from G′ by a lens extension
on x. We obtain a plane ε-angle Lombardi drawing of G using Lemma 8.5

Case 3.3.2. The removal of u and v from G disconnects the graph, that is, u
and v form a separation pair in G; see Fig. 22b. Since there are exactly two edges
between u and v, their removal disconnects G into two connected components A
and B with at least two vertices each (otherwise, there would be a self-loop).
Furthermore, G contains an edge from u to a vertex uA in A and another edge10

from u to a vertex uB in B. If this would not be the case than v would be a
cutvertex in G. Analogously, there is an edge from v to a vertex vA in A and an
edge from v to a vertex vB in B. We have uA 6= vA (and uB 6= vB); otherwise,
this vertex would be a cutvertex in G.

Let A′ be the graph G−B with an additional edge between u and v. Since G is15

biconnected, there are two disjoint paths in G between any two vertices from A.
Only one of these paths can “leave” A through the separation pair u, v. Hence,
we can redirect the part outside A to the new edge (u, v) in A′, which shows
that every two vertices in A′ are connected with at least two disjoint paths. This
shows that A′ is biconnected.20

Let B′ be the graph B with an additional edge between uB and vB . We can
show that B′ is biconnected by the same arguments we have applied for A′:
In G there have to be two disjoint paths between every vertex pair from B. Only
one of these paths can leave B over the separation pair u, v and this part can
be replaced by the new edge that we added to B′. Hence between every two25

vertices in B′ we have two disjoint paths, which proves that B′ is a biconnected
4-regular plane graph with at most n − 4 vertices. By induction B′ admits a
plane ε-angle Lombardi drawing. Furthermore, G can be obtained by adding A′

and B′ along one of the edges between u and v of A′ and the edge (uB , vB) of B′.
Using Lemma 7, we can obtain a plane ε-angle Lombardi drawing of G.30

Case 4. G is simple, but not 3-connected, so there exists at least one separation
pair that splits G into at least two connected components. Let Au,v be a smallest
connected component induced by the separation pair u, v. We say that u, v is a
minimal separation pair if Au,v does not contain any separation pair and there
is no separation pair between a vertex of Au,v and either u or v.35
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Fig. 23: Illustrations for Case 4 in the proof of Theorem 7.

We create two biconnected 4-regular plane plane graphs as follows; see Fig. 23a.
Let A be the subgraph of G induced by the vertices in Au,v, u, and v, let B be the
subgraph of G that contains all vertices not in Au,v and all edges not in A; in par-
ticular, there is no edge (u, v) in B. By this construction, all edges of G are either
part of A or part ofB and both A andB are connected, and every vertex is part of5

either A or B, except the two vertices u and v which are part of both. However, A
and B are not 4-regular, so we create two 4-regular graphs A′ and B′ for the
recursion as follows. Let degA(u),degA(v),degB(u),degB(v) be the degree of u
and v in A and B, respectively, with degA(u)+degB(u) = degA(v)+degB(v) = 4.

Case 4.1. degA(u) = 1 or degA(v) = 1. W.l.o.g., let degA(u) = 1. Let x be10

the neighbor of u in A. We have that x 6= v since otherwise A consists only of a
single edge (if degA(v) = 1) or v is a cutvertex in G (if degA(v) = 3). Then x, v
is a separation pair of G whose removal gives a connected component Ax,v with
less vertices than Au,v, as it contains the same vertices but not x, contradicting
the minimality of the separation pair u, v.15

Case 4.2. degA(u) = degA(v) = 3; see Fig. 23b. We add an edge between u
and v to A to obtain the graph A′. The resulting graph is biconnected: consider
any pair of vertices a, b ∈ A′. There were at least two vertex-disjoint paths in G
between a and b. Since u, v is a separation pair in G, at most one of these two
paths traverses vertices in G − A, and any path through these vertices must20

contain u and v. Hence, there is a path that traverses the same edges in A′ and
uses the newly introduced edge between u and v instead.

We remove u and v from B and add an edge between their neighbors to
form B′. Let x be the neighbor of u in B and let y be the neighbor of v in B.
We have that x 6= y since otherwise x would be a cutvertex in G. Hence, we25

introduce no self-loops. With a similar argument, B′ is also biconnected, as any
path between two vertices through vertices in A has to traverse u and v and—
since they both have degree 1 in B— their neighbors, so the path can use the
newly introduced edge instead.

We recursively obtain a plane ε-angle Lombardi drawing of A′ and B′. Since30

both A′ and B′ have fewer vertices than G, they admit one by induction. To
obtain a drawing of G from A′ and B′, we have to remove the edge (u, v) from A′

and the edge (x, y) from B′ and we have to add the edges (u, x) and (v, y). This
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Fig. 24: Illustration for Case 4.3.1 in the proof of Theorem 7.
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Fig. 25: Illustration for Case 4.3.2 in the proof of Theorem 7.

procedure is equivalent to adding A′ and B′ along these respective edges, so we
can solve it using the algorithm described in Lemma 7.
Case 4.3. degA(u) = degA(v) = 2. We consider two more subcases.
Case 4.3.1. The separation pair u, v splits G into three connected compo-
nents Au,v, Bu,v, and Cu,v; see Fig. 24. We add two edges between u and v to A5

to obtain A′. Let uB be the neighbor of u in Bu,v and let vB be the neighbor
of v in Bu,v. We have that uB 6= vB , as otherwise it would be a cutvertex of G.
We obtain the 4-regular multigraph B′ by adding an edge between uB and vB
to Bu,v. By the same argument as in Case 3.3.2, B′ is biconnected. Analogously,
we obtain the biconnected 4-regular multigraph C ′ by adding an edge between10

the neighbor uC of u in Cu,v and the neighbor vC of v in Cu,v to Cu,v. We
recursively create a plane ε-angle Lombardi drawing of A′, B′, and C ′. Then, we
create a plane ε-angle Lombardi drawing with the use of Lemma 7 by adding A′

and B along one edge between u and v of A′ and the edge (uB , vB) of B, and
adding the resulting graph and C along the other edge between u and v and the15

edge (uC , vC) of C.
Case 4.3.2. The separation pair u, v splits G into two connected compo-
nents Au,v and Bu,v; see Fig. 25. In this case, the graph B consists of Bu,v, u,
and v and the edges incident to u or v and a vertex of Bu,v.

We add two edges between u and v to both graphs A and B to obtain A′20

and B′. Let M and M ′ be the primal-dual pair for which A′ is the medial graph.
We claim that M or M ′ is simple. Let u1 and u2 be the neighbors of u in A
and let v1 and v2 be the neighbors of v in A. Since G is simple, there is no
multi-edge between u and v in A. Furthermore, there is no single edge (u, v)
in A, since otherwise u and v would each only have one neighbor in Au,v and25

these neighbors would be a separation pair of G that induces a smaller con-
nected component. Thus, each of u1, u2, v1, v2 is different from u and v and we
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introduce no self-loops. By construction, the graph Au,v contains no separation
pair and thus has either at most 3 vertices or is 3-connected. We claim that A′

is 3-connected. If Au,v has only 1 vertex, then u1 = u2, so there is a multi-edge
in Au,v which contradicts simplicity of G. If Au,v has only 2 vertices, then there
has to be a multi-edge between them, which again contradicts simplicity of G.5

If Au,v has only 3 vertices, then there have to be 4 edges in Au,v, which also
contradicts simplicity of G. If Au,v has at least 4 vertices, then u and v have at
least 3 different neighbors in Au,v, as otherwise there would be a cutvertex or
a separation pair that gives a smaller connected component than the separation
pair u, v. Thus, if u and v are connected to at least 3 vertices of Au,v and u10

and v are connected by an edge, which preserves 3-connectivity. Hence, A′ is
3-connected. Since G is simple, there is no multi-edge between u and v in A.
Furthermore, there is no single edge (u, v) in A, since otherwise u and v would
each only have one neighbor in Au,v and these neighbors would be a separation
pair of G that induces a smaller connected component. Hence, A′ has no separa-15

tion pair and exactly one multi-edge between u and v. By Lemma 2, that means
that M and M ′ have exactly one pair of parallel edges in total, so one of them
has to be simple.

We recursively obtain a plane ε-angle Lombardi drawing of B′. Let 90◦ + α
be the angle described by the tangents of the two edges between u and v at u.20

Note that α might be negative, but |α| ≤ ε. Since the primal or dual of A′

is simple, we obtain a plane |α|-regular Lombardi drawing of A′ by Lemma 5.
Thus, the angle described by the tangents of the two edges between u and v at u
is either 90◦ + α or 90◦ − α. We can make sure that the angle is 90◦ + α by
inverting the direction of all edges in the proof of Lemma 5 in case it is not.25

We perform a Möbius-transformation on the drawing of A′ such that the
edges between u and v are drawn with an angle of 45◦ + α/2 between either
edge and the segment between u and v. We pick the Möbius-transformation
such that u and v are very close to each other; in particular, we want them to
be close enough such that the two circles that the edges between u and v lie on30

contain no other vertex of A′ and no edges of A′ that is incident to neither u
nor v. Note that the radius of these circles are the same and approach 0 as the
distance between u and v approaches 0; hence, such a Möbius-transformation
exists.

We apply another Möbius-transformation on B′ such that the distance bet-35

ween u and v is the same as in the drawing of A′ and such that the two edges
between u and v are drawn with an angle of 135◦−α/2 between either edge and
the segment between u and v. We now place the drawing of B′ on the drawing
of A′ such that both copies of u lie on the same coordinate and both copies of v
lie on the same coordinate and then we remove all edges between u and v. By40

construction, the whole drawing of B′ lies inside the region described by the two
edges between u and v in the drawing of B′. Further, since these edges lie on
the same circles as the two edges between u and v in A′, this region contains no
vertices or edges in the drawing of A′ (except u and v and their incident edges
themselves). Since the drawings of A′ and B′ are plane and we cannot introduce45
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a crossing between an edge of A′ and an edge of B′ after removing the multi-
edges between u and v, the resulting drawing of G is also plane. Since u and v
use the same ports in the drawing of A′ and the drawing of B′, the resulting
drawing is a plane |α|-angle Lombardi drawing of G. Because of |α| ≤ ε, this
drawing is also a plane ε-angle Lombardi drawing of G. ut5
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