
Load-n-Go: Fast Approximate Join Visualizations That Improve
Over Time

Marianne Procopio, Carlos Scheidegger, Eugene Wu, Remco Chang

Abstract—Visual exploratory analysis of large-scale databases often relies on precomputed query results in order to guarantee
interactivity with the visualization system. This is especially true when the query requires joining tables across the database since join
is one of the most computationally expensive operations and in the worst case requires joining every row of one table to every row of
the other table. Advances in approximate query processing enable quick look summary statistics, but with limitations to the types and
complexities of the queries. A recent advancement in approximate query processing is a technique called Wander Join, that performs
random walks across these joins, resulting in faster convergence on aggregation values. However, this online aggregation technique
is not tailored for visualization tasks that often involve filtering on one or more conditions or viewing aggregation values across multiple
groups such as in bar charts. In both cases, the convergence rate is slowed since more samples are needed in order to find records
that pass the filters, resulting in the user waiting longer for a confident result. To address this issue, we propose a generalization of the
Wander Join algorithm that improves the convergence rate for visualization queries involving filtering and viewing aggregation. We
implemented this improved version of Wander Join that we call Load-n-Go and compared it to the original, specifically in the context of
visual analysis tasks. Our evaluation finds that our algorithm outperforms Wander Join by reducing the sample complexity. Load-n-Go
requires up to 50% fewer samples for group by queries, and up to 85% fewer samples for filtering queries. Such reduced sampling
complexity can represent up to 2x and 6x speedups respectively for visual exploratory systems using the Load-n-Go algorithm.

1 INTRODUCTION

Responsive visual exploration typically requires that the underlying
data be available at interactive speeds. This requirement can be easily
met when data resides in memory, but such a solution is not scalable.
As the amount of data increases, the data must be stored on disk or in
a remote database. As a result, the queries used to populate the visu-
alization can take minutes, hours or longer to return, resulting in long
wait times between each of the user’s interactions and diminishing the
user’s ability to quickly explore the data.

This lag is exacerbated if the analysis queries involve joining data
across multiple database tables. For example, consider the following
SQL query that finds the average customer spending per region.

SELECT AVG(orders.order_total), location.region
FROM orders, customers, location
WHERE orders.customerID = customer.customerID AND

customer.locationID = location.locationID
GROUP BY location.region

The query must read data from three separate tables, “or-
ders”, “customers” and “locations”, combine them together us-
ing the expressions in the WHERE clause, partition the resulting
data by location.region, and finally compute the average
order total for each region. JOIN operations are well known to
be costly [35]. To compute fully accurate results, the join operation
requires at minimum full scans of both input tables, and naive imple-
mentations take quadratic time in the sizes of the two tables.

1.1 Online Aggregation, Ripple Join, and Wander Join
Although the classic approach to improve query response times is to
precompute all possible results, this can require a long wait time be-
fore the user sees any result. In contrast, it is often desirable to load
new datasets and immediately start performing analyses. To this end,
there has been recent interest in online aggregation algorithms that do
not require precomputation and instead select samples “online” when
the analyst submits a new query [19, 25, 3]. Such algorithms can pro-
vide real-time (approximate) query results along with their associated

• Marianne Procopio and Remco Chang are with Tufts University. Email:
Marianne.Procopio@tufts.edu, remco@cs.tufts.edu.

• Carlos Scheidegger is with the University of Arizona. Email:
cscheid@email.arizona.edu.

• Eugene Wu is with Columbia University. Email: ewu@cs.columbia.edu.

confidence intervals as the systems draw samples from the database
while executing the query. The goal of this work is to reduce the num-
ber of samples necessary to achieve a desired error bound at a given
confidence level. Reducing this sample complexity potentially means
that the number of input records that need to be read can be reduced
by orders of magnitude as compared to fully reading the input tables.

Extending the original online aggregation algorithm [19], Ripple
Join was designed specifically to support JOIN queries [17]. Unfor-
tunately, Ripple Join requires sample sizes that can be impractical for
the interactive needs of visualization applications. For a query that
joins tables A and B, the algorithm samples records from each table
independently, and then checks whether or not they satisfy the JOIN
condition, but often the join of two randomly chosen records is highly
unlikely to pass. Thus, the number of records that need to be sampled
can be very large before the CI converges to a satisfactory level and
the approximate query result is sufficiently close to the ground truth.

The Wander Join algorithm addresses this issue [26]. Instead of
sampling randomly from each table like Ripple Join, Wander Join
samples randomly from table A and then chooses a record from ta-
ble B that the record can join with. Wander Join does this by modeling
the JOINs as a join graph and walking along edges to find a valid
record to join against in the next table. This method increases the con-
vergence rate of the query, resulting in less wait time for the user to
achieve a higher confidence estimate.

Although Wander Join is a significant improvement over prior tech-
niques for executing JOIN queries, it is not directly suited for interac-
tive visualization. A key limitation is that it draws samples indepen-
dently of the WHERE and GROUP BY filters in the query. This prob-
lem is exacerbated when few records are able to satisfy the filters, as is
the case when the user is interested in a small segment of the dataset,
or when the groups in the GROUP BY query exhibit skew. Crucially,
these two conditions are common in interactive visualization scenar-
ios.

We evaluated Wander Join in interactive visualization settings
where users want to dynamically filter on expensive JOIN queries,
and extended its techniques to reduce the sample complexity for this
class of query workloads. This extension of Wander Join addresses the
needs of interactive visualizations where users often select subsets of
data resulting in executing expensive JOIN queries with highly selec-
tive filters.

1.2 Load-n-Go
At its core, our proposed system, Load-n-Go, is a progressive visu-
alization system that improves the accuracy of the visualization over
time. It uses an extension to Wander Join that addresses the limitations
described above. The key algorithmic insight in Load-n-Go is to take
the query filters into account when drawing samples from the database
by prioritizing samples that are more likely to satisfy the filters. To
achieve this, we integrate the idea of importance sampling [18] into
Wander Join and describe how to perform this prioritization.

In evaluating and comparing with Wander Join, our technique out-
performs the original algorithm for queries involving WHERE and
GROUP BY clauses. By skipping samples that do not pass the filter,
we achieved a convergence rate that is up to 6 times faster than Wan-
der Join, meaning Wander Join requires 6 times more samples than
Load-n-Go to achieve the same confidence interval. When executing
GROUP BY queries, we require up to 50% fewer samples than Wander
Join when group membership is unevenly distributed.

2 RELATED WORK

There is a clear need for highly responsive visual interfaces that can
explore large databases. There has been recent interest in co-designing
interactive visualization with the underlying data processing systems
that compute the results rendered onscreen [41, 42].

The most relevant work has been in progressive visualization sys-
tems that quickly render results with wide confidence intervals (less
accuracy) and improve the accuracy over time. Systems such as sam-
pleAction [15] were instrumental in showing that users benefited from
seeing immediate results alongside incrementally improving accura-
cies, and that users felt more empowered to actively explore their data
instead of waiting for queries to complete. Their results highlight the
importance of researching effective ways to visualize approximate and
improving results [13, 43, 30, 33], as well as a need for further study.

Towards scalable systems, Im et al. [21], Pansare et al. [32] and
others [8, 5, 22] developed systems for running online aggregation in
a distributed manner. They take advantage of MapReduce and other
distributed computation infrastructure, but are limited to queries on
single tables, and do not provide user controls to adjust the resources
that the system devotes to computing higher accuracy values for dif-
ferent groups in the visualization.

Beyond online aggregation, there are a number of techniques that
can be used to support visual exploration and analysis of big data. In
addition to sampling [1, 2, 9, 23, 27, 12, 11, 14, 13, 34, 37, 21] and
precomputation [38, 28, 29, 31, 40], researchers have also explored
the use of predictive prefetching [10, 7, 4, 6] and specialized databases
such as column stores [39] and in-memory databases [24]. Addition-
ally, some systems use a combination of these techniques [4]. For a
more comprehensive review of these techniques and their use in visu-
alization, refer to the survey by Godfrey et al. [16].

3 WANDER JOIN ALGORITHM

Wander Join represents the state of the art in online aggregation across
JOINs. Like most other approximate query processing techniques, it
provides online aggregation support for computing summary statistics
such as sums and counts. More importantly, it improves on the con-
vergence rate over Ripple Join by intelligently selecting which records
to join with. It does this by modeling the JOINs as a join graph and
walking along edges to find valid joined data. Figure 1 shows an ex-
ample join graph for joining tables A, B and C. In this graph, each
row (e.g. a1, a2,...) represents a record in one of the tables, and an
edge between two rows means that the two records can be joined in a
natural join. Wander Join selects one of the records (a1-a5) in Table
A, then randomly selects a path to Table B, and repeats for Table C.

An estimate of the aggregate value is returned after each walk.
Since random walks will not return the uniform distribution needed
to generate an unbiased estimate, Wander Join uses the Horvitz-
Thompson estimator [20]. This removes bias by dividing the value
to be aggregated by the probability of having chosen the path taken to
reach that value. For example, assuming the tables A, B and C can be

joined across their common dimensions:

A(d1,d2) ./ B(d2,d3) ./C(d3,d4) (1)

We run a query to sum over the dimension d4. Wander Join selects a2
from the join graph below. It then randomly selects one of the edges
leading from a2 to Table B, resulting in either b1 or b2 as the next
record. If it picks b2 then c1, c2 or c3 is chosen next according to the
graph. The probability of selecting this path is 1

5 ×
1
2 ×

1
3 . Let v(d4)

be the value of the d4 attribute for this sample. The Horvitz-Thompson
estimator would return: v(d4)/(1

5 ×
1
2 ×

1
3).

Fig. 1. In Wander Join, JOINs are modeled as a graph, and random walks are
taken along valid paths to select a sample.

A walk will fail if a record does not pass a filter specified in the
query. In this case, the aggregate value is treated as 0 to keep the
Horvitz-Thompson estimator unbiased, since this sample is in the
probability space of the distribution. However, this slows convergence
of the estimate. For the rest of this paper, we treat the convergence rate
as measuring the reduction of the estimate’s relative standard error:

η =
z
√

v√
N

E
(2)

where v is the variance of the estimate, E, and N is the number of
samples taken (

√
v√
N

is the standard error of the estimate). z is the z-
score for the half width of the given confidence level. As the number
of samples increases, the relative error approaches 0. The relative error
allows us to compare convergence rates over different queries.

3.1 Using Wander Join In Visual Exploration
In order to evaluate Load-n-Go, we implemented the Wander Join al-
gorithm and compared its performance to Load-n-Go. To ensure that
the comparison is fair, we: (1) evaluated the performance of the two
algorithms based on the number of samples needed to reach conver-
gence instead of clock time where language, experimental platform,
etc. can affect the results, (2) used the same experiments described in
the original Wander Join paper, and (3) extended the evaluation to in-
clude queries relevant to interactive visualization where filtering using
the WHERE and the GROUP BY clauses are common.

3.1.1 Data
Similar to the original Wander Join paper, we evaluated the perfor-
mance of Wander Join using the TPC-H benchmark, a synthetically
generated dataset that simulates a data warehouse, and includes a set
of queries that represent common analysis queries by business ana-
lysts. For our evaluation, we used four sizes of TPC-H data: 1MB,
10MB, 100MB, and 2GB. However, we found that regardless of the
data size, the performance profile remains the same, likely due to the
nature that TPC-H data is generated by drawing from an even distribu-
tion. As a result, we only report the evaluation results using the 10MB
dataset to reduce the impact of disk access delays during testing.

3.1.2 Validation Experiment
To verify that the accuracy of our Wander Join implementation is con-
sistent with the original, we ran a validation experiment comparing
performances for the following query to reach 95% confidence level:
SELECT sum(l_quantity)
FROM part, lineitem
WHERE part.p_partkey = lineitem.l_partkey

The results of this experiment show that both implementations of
Wander Join required the same number of samples to achieve the same
confidence interval, thus validating that our implementation is faithful
to the original.

3.1.3 Evaluating Common Visualization Queries
We tested Wander Join’s performance with filtering. First we tested the
performance of Wander Join with queries involving WHERE clauses:
SELECT sum(l_quantity)
FROM part, lineitem
WHERE part.p_partkey = lineitem.l_partkey
AND part.p_size <= X
AND lineitem.l_quantity <= Y

This query returns the number of total parts sold for parts with sizes
smaller than or equal to X and when the number sold per order is Y
or less. X and Y were varied to filter out 0% to 99% of all rows in
the full JOIN. If a filter is highly selective, most records do not pass
the filter conditions (meaning the selective percentage is the percent
of rows that are rejected by the filter conditions compared to the full
JOINwithout filtering). The higher the selective percentage, the fewer
number of records that pass the filters.

Figure 3 shows the relative error for each level of filtering after
10,000 samples were taken for Wander Join. Note that when the se-
lective filtering percentage is at 90% (the WHERE clause in the query
filters out 90% of the data), the uniform sampling approach of Wander
Join can be inefficient. This is because most of the samples drawn by
Wander Join in this highly selective query will be considered a “failed
walk” as these samples do not satisfy the WHERE condition.

For Wander Join to achieve 0.01 relative error, 208,000 samples
would be needed. In contrast, the full JOIN of this query requires
60,175 rows. It is clear that in this case, the effectiveness of Wander
Join is not only significantly reduced but Wander Join is over 3 times
slower than running the full JOIN.

Our last set of testing was to evaluate Wander Join’s performance
for GROUP BY queries. We ran the same query as in the filter tests,
but without the filter conditions and grouped on part size. We limited
the dataset to have 40 different part sizes:

SELECT sum(l_quantity)
FROM part, lineitem
WHERE part.p_partkey = lineitem.l_partkey
GROUP BY part.p_size

This resulted in 40 groups, with an even distribution of the 60,175
records across all groups. It took approximately 25,000 total samples
for each group to reach a maximum of .05 relative error. However,
there are many situations where the records are not evenly distributed
across all groups, such as charting sales of seasonal items by month,
where number of sales would be fewer outside of the relevant season.

To simulate these conditions, we created a “Skewed” condition by
modifying the dataset so that 22% of all records fell into one group,
and the remaining data items were evenly distributed across the re-
maining 39 groups. It now takes Wander Join over 50,000 samples
to achieve the same .05 relative error across all groups, nearly double
the number of samples for an evenly distributed dataset. The group
with 22% of the data is sampled more often than the other groups and
reaches .05 relative error first. However, it is still sampled while the
other groups converge, reducing the rate of convergence for the re-
maining groups, but also improving the relative error of the dominate
group. The group with 22% of the data reaches .01 relative error while
the other groups reach .05. This is 5 times higher in error of the esti-
mate and a user cannot accurately compare the group estimates.

4 LIMITATIONS OF WANDER JOIN

The above experiments demonstrate both the potential of Wander Join
and its limitations. Wander Join can support fast, iterative queries
that do not require pre-computation and storage. Further, it supports
JOINs that allow for flexible data analysis. In sum, Wander Join rep-
resents the state-of-the-art in online aggregation techniques.

However, Wander Join also has its limitations. As shown in the ex-
periments above, in cases where the query involves highly selective

filters, either through WHERE or GROUP BY clauses, Wander Join’s
performance suffers. In some cases, it might be more beneficial to per-
form the full JOIN instead of using Wander Join’s sampling approach.
Unfortunately, since these highly selective filters are common in visu-
alization applications, improving Wander Join is necessary before it
can be readily adopted by visualization researchers and practitioners.

5 LOAD-N-GO: WANDER JOIN FOR VISUAL DATA EXPLO-
RATION

To address the limitations described above, we extended Wander Join
to develop Load-n-Go. The key algorithmic insight in Load-n-Go is to
take the WHERE and GROUP BY clauses into account when drawing
samples from the database by prioritizing samples that are more likely
to satisfy the filters. We achieve this by integrating the idea of impor-
tance sampling [18] into Wander Join, which allows us to prioritize
samples by weighting them based on their importance to the query.
Wander Join uniformly samples (the weight of each record is the same
for all records), which can degrade the convergence rate under filter-
ing and GROUP BY queries. By adding importance sampling, we can
sample non-uniformly by changing record weights.

We apply importance sampling in two ways. For filter queries, we
set the weight to 0 for records that do not pass the filters. This prevents
Load-n-Go from sampling the record again in the future, thereby re-
ducing sample failures and the overall number of samples needed to
reach convergence. All other records are sampled from uniformly.

Secondly, importance sampling is used to uniformly sample from
all groups in a GROUP BY query, resulting in all groups converging
at the same rate, regardless of the number of records in each group.
We weight each record based on the number of records that also fall
into that record’s group and start sampling from the table containing
the GROUP BY attribute. This allows Load-n-Go to uniformly sample
based on group instead of uniformly by record and all groups con-
verge at the same rate. Now the user is not waiting for a group with
low membership to converge. The following sections discuss how we
applied importance sampling in more detail, as well as our evaluation
of the methods and comparison to Wander Join.

5.1 Evaluating Highly Selective Queries
Filtering data is a common task of exploratory analysis [36]. Consider
a retail company business analyst interested in the average a customer
spends on clothing, as opposed to all the items her company sells.
Her query uses a filter to limit the average calculation to only include
clothing items. As seen in section 3.1.3, Wander Join’s performance
in this scenario can be worst than executing the full query.

Our solution is to prune out samples that do not pass the filter. By
eliminating those records, we prevent sample failures and can con-
verge with less samples (and therefore faster) than Wander Join.

5.1.1 Method
When a filtering query is issued, we set the weight of each record
uniformly. As we sample, if we encounter a record that fails the filter,
we set the record’s weight to 0 and consider this sample a failure.
Although we still have a failure in the same sense as Wander Join,
the key difference from Wander Join is that by setting the weight to 0,
we will guarantee that we never sample this failed record again. This
is beneficial since Wander Join’s sampling is with replacement; any
record can be sampled multiple times, regardless of whether the record
has failed the filter criteria once before. The bigger benefit is that this
record is pruned from all paths that lead to it. Using Figure 2 as an
example, we see that two possible paths to sample are a1→b1→c2
and a1→b2→c2. If Load-n-Go selects a1, then b1, then c2 and record
c2 fails the filter, c2’s weight is now 0 and is pruned. Now not only has
a1→b1→c2 been eliminated as a possible path, but also a1→b2→c2.
By pruning out the failed record, we prevent any path from sampling
that record again. We also recursively prune the path when possible.
For example, if a record in Table A can only JOIN with records that
have been pruned out in Table B, then the record in Table A can be
pruned out as well. We continue recursively pruning back up the path
when we encounter a failure.

Fig. 2. (a) A JOIN graph for a 3 table JOIN. Each record starts with a weight of
1. If Load-n-Go chooses the path a1→b1→c2 and c2 fails the filter, c2 is pruned.
(b) The resulting JOIN graph after pruning. Note that the path a1→b2→c2 has
been pruned even though we never selected that path. Pruning out c2 prevents
any path from sampling c2 again for this query.

5.1.2 Evaluation
We ran the same filtering queries as in section 3.1.3, varied the
part.p size and lineitem.l quantity filter to achieve levels of 0% to 99%
filtering and used the same 10MB TPC-H dataset.

Figure 3 captures the results of the selective filter queries. The
higher the selective percentage, the larger improvement over Wander
Join. For the 99% selective filter query, Load-n-Go achieved .08 rel-
ative error after 10,000 samples, while Wander Join had .22 relative
error. In terms of number of samples, Wander Join needed 65,000 to
reach .08 relative error. Load-n-Go is an improvement over Wander
Join by reducing the sample complexity by 85% (and there by speed-
ing up convergence by a factor of 6). Load-n-Go outperformed Wan-
der Join at all selective filter queries and performed the same at the 0%
selective filter query (since no records were filtered out).

5.2 Evaluating Group By Queries
As discussed in earlier sections, GROUP BY queries are ubiquitous in
exploratory analysis. More often than not, the data rendered by a bar
chart or heat map is computed as the result of a GROUP BY query over
the x, or x and y, axis attributes.

Since Wander Join uniformly samples each record from the under-
lying table, each group’s convergence rate depends on the proportion
of records that belong to the group. Thus, it can take a large number of
samples before the algorithm draws a record for an unpopular group.
We address this issue, we use importance sampling to uniformly sam-
ple from each group by weighting the records in each group relative to
the number of records in the group and the number of total groups.

5.2.1 Method
To ensure uniformly sampling from each group, we weight each record
in the table referenced in the GROUP BY clause with this formula:

ωi =
1

αβ
(3)

where α is the number of records that are in the same group as
record i and β is number of distinct groups. The intuition is that we
want to sample from each group evenly, and sample each record within
each group evenly. The 1

α
term ensures uniform sampling of records in

a given group, while 1
β

ensures uniformly sampling from each group.
With this weighting, Load-n-Go randomly selects from the GROUP

BY table first, guaranteeing even sampling from each group. The
records in the next tables are weighted uniformly as before. Using
Figure 1 as an example, assume Table A contains the attribute we will
group on and records a1...an will be weighted according to equation 3.
Records in Table B and Table C will be weighted uniformly. We do not
need to adjust their sampling rates since we have already guaranteed
even sampling by group from reweighting records in Table A.

5.2.2 Evaluation
We ran the same GROUP BY query as in section 3.1.3 on the evenly
distributed TPC-H dataset, where equal number of records fell into
each group. We also tested with the same skewed dataset as in 3.1.3,
so that 22% of the data fell into one group and the remaining data was
evenly distributed across the remaining 39 groups.

To achieve .05 relative error across all groups, the same number of
samples are needed regardless of the data distribution, since Load-n-
Go samples evenly from each group, and the groups converge at the

Fig. 3. The relative error at 95% CI of Wander Join and Load-n-Go after 10,000
samples over various levels of selective filtering for the TPC-H dataset (with 60,175
rows in the full JOIN).The selective filter percentage is the percent of records in
the full JOIN that do not pass the filter conditions.The higher the selective filter
percentage is, the slower the rate of convergence.By pruning out records that fail
the filter, our relative error is reduced by nearly a factor of 3 over standard Wander
Join at 99% selective filter.

Fig. 4. The number of samples needed for Wander Join and Load-n-Go to achieve
0.1 to 0.01 relative error for all 40 groups in a GROUP BY query using the skewed
dataset. Load-n-Go requires less samples than Wander Join to achieve all relative
errors on a skewed dataset. Wander Join requires nearly double the number of
samples as Load-n-Go to achieve relative errors 0.05 and lower.

same rate. This is in contrast to Wander Join, which needed twice as
many samples as Load-n-Go to reach the same relative error.

Figure 4 shows the number of samples needed for Load-n-Go and
Wander Join to reach relative errors 0.1 to 0.01 on the skewed dataset.
Load-n-Go required 25% to 50% fewer samples than Wander Join to
reach the same relative error.

6 CONCLUSION AND FUTURE WORK

We present Load-n-Go, a progressive visualization system that extends
online aggregation to enable interactive data exploration. Load-n-Go
improves on the latest online aggregation algorithm, Wander Join, by
using importance sampling. Importance sampling allows Load-n-Go
to converge much faster on highly selective WHERE queries and con-
verge uniformly on all groups in GROUP BY queries, regardless of
data membership distribution.

We showed that Load-n-Go outperforms Wander Join on filtering
queries and performs equally as well on non-filtering queries. We also
showed that Load-n-Go requires up to 50% fewer samples than Wan-
der Join to converge on all groups in a GROUP BY query.

Through Load-n-Go’s evaluation, we identified multiple opportu-
nities for future work. Being able to preprune out records that do
not pass query filters would improve Load-n-Go’s convergence rate
even further. We’d also like to explore importance sampling as ap-
plied to rare or extreme values, so they are not missed in the sampling
process.Load-n-Go has shown to be an improvement over current on-
line aggregation methods for visualization tasks and through future
work can be an even more capable system.

REFERENCES

[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua approximate
query answering system. In ACM Sigmod Record, volume 28, pages 574–576. ACM,
1999.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:
queries with bounded errors and bounded response times on very large data. In
Proceedings of the 8th ACM European Conference on Computer Systems, pages 29–
42. ACM, 2013.

[3] D. Alabi and E. Wu. Pfunk-h: approximate query processing using perceptual mod-
els. In HILDA@ SIGMOD, page 10, 2016.

[4] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for
interactive visualization. In Proceedings of the 2016 International Conference on
Management of Data, pages 1363–1375. ACM, 2016.

[5] J.-H. Böse, A. Andrzejak, and M. Högqvist. Beyond online aggregation: parallel
and incremental data mining with online map-reduce. In Proceedings of the 2010
Workshop on Massive Data Analytics on the Cloud, page 3. ACM, 2010.

[6] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou, A. Kalinin,
O. Papaemmanouil, and S. B. Zdonik. Query steering for interactive data explo-
ration. In CIDR, 2013.

[7] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity while
exploring massive time series. In Visual Analytics Science and Technology,f 2008.
VAST’08. IEEE Symposium on, pages 59–66. IEEE, 2008.

[8] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy,
and R. Sears. Online aggregation and continuous query support in mapreduce. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, pages 1115–1118. ACM, 2010.

[9] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample+ seek:
Approximating aggregates with distribution precision guarantee. In Proceedings of
the 2016 International Conference on Management of Data, pages 679–694. ACM,
2016.

[10] P. R. Doshi, E. Geraldine, G. Rosario, E. Rundensteiner, and M. Ward. A strategy
selection framework for adaptive prefetching in data visualization. In Scientific and
Statistical Database Management, 2003. 15th International Conference on, pages
107–116. IEEE, 2003.

[11] J.-D. Fekete. Progressivis: a toolkit for steerable progressive analytics and visual-
ization. In 1st Workshop on Data Systems for Interactive Analysis, page 5, 2015.

[12] J.-D. Fekete and R. Primet. Progressive analytics: A computation paradigm for
exploratory data analysis. arXiv preprint arXiv:1607.05162, 2016.

[13] D. Fisher. Incremental, approximate database queries and uncertainty for exploratory
visualization. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Sympo-
sium on, pages 73–80. IEEE, 2011.

[14] D. Fisher, S. M. Drucker, and A. C. König. Exploratory visualization involving
incremental, approximate database queries and uncertainty. IEEE computer graphics
and applications, 32(4):55–62, 2012.

[15] D. Fisher, I. Popov, S. Drucker, et al. Trust me, i’m partially right: incremen-
tal visualization lets analysts explore large datasets faster. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 1673–1682.
ACM, 2012.

[16] P. Godfrey, J. Gryz, and P. Lasek. Interactive visualization of large data sets. IEEE
Transactions on Knowledge and Data Engineering, 28(8):2142–2157, 2016.

[17] P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation. ACM SIGMOD
Record, 28(2):287–298, 1999.

[18] W. K. Hastings. Monte carlo sampling methods using markov chains and their ap-
plications. Biometrika, 57(1):97–109, 1970.

[19] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In ACM SIGMOD
Record, volume 26, pages 171–182. ACM, 1997.

[20] D. G. Horvitz and D. J. Thompson. A generalization of sampling without re-
placement from a finite universe. Journal of the American statistical Association,
47(260):663–685, 1952.

[21] J.-F. Im, F. G. Villegas, and M. J. McGuffin. Visreduce: Fast and responsive incre-
mental information visualization of large datasets. In Big Data, 2013 IEEE Interna-
tional Conference on, pages 25–32. IEEE, 2013.

[22] V. Kalavri, V. Brundza, and V. Vlassov. Block sampling: Efficient accurate online
aggregation in mapreduce. In Cloud Computing Technology and Science (Cloud-
Com), 2013 IEEE 5th International Conference on, volume 1, pages 250–257. IEEE,
2013.

[23] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and interactive cube
exploration. In Data Engineering (ICDE), 2014 IEEE 30th International Conference
on, pages 472–483. IEEE, 2014.

[24] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory database
system based on virtual memory snapshots. In Data Engineering (ICDE), 2011
IEEE 27th International Conference on, pages 195–206. IEEE, 2011.

[25] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R. Rubinfeld. Rapid
sampling for visualizations with ordering guarantees. Proceedings of the VLDB
Endowment, 8(5):521–532, 2015.

[26] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via random walks.
In Proceedings of the 2016 International Conference on Management of Data, pages
615–629. ACM, 2016.

[27] X. Li, J. Han, Z. Yin, J.-G. Lee, and Y. Sun. Sampling cube: a framework for statisti-
cal olap over sampling data. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 779–790. ACM, 2008.

[28] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-time exploration of
spatiotemporal datasets. IEEE Transactions on Visualization and Computer Graph-
ics, 19(12):2456–2465, 2013.

[29] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big data. In
Computer Graphics Forum, volume 32, pages 421–430. Wiley Online Library, 2013.

[30] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but verify: Optimistic visualiza-
tions of approximate queries for exploring big data. 2017.

[31] C. A. Pahins, S. A. Stephens, C. Scheidegger, and J. L. Comba. Hashedcubes: Sim-
ple, low memory, real-time visual exploration of big data. IEEE Transactions on
Visualization and Computer Graphics, 23(1):671–680, 2017.

[32] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large
mapreduce jobs. Proc. VLDB Endow, 4(11):1135–1145, 2011.

[33] N. Pezzotti, B. Lelieveldt, L. van der Maaten, T. Hollt, E. Eisemann, and A. Vi-
lanova. Approximated and user steerable tsne for progressive visual analytics. IEEE
Transactions on Visualization and Computer Graphics, 2016.

[34] R. Rosenbaum and H. Schumann. Progressive refinement: more than a means to
overcome limited bandwidth. In IS&T/SPIE Electronic Imaging, pages 72430I–
72430I. International Society for Optics and Photonics, 2009.

[35] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings
of the 1979 ACM SIGMOD international conference on Management of data, pages
23–34. ACM, 1979.

[36] B. Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages
336–343. IEEE, 1996.

[37] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual analytics: User-driven
visual exploration of in-progress analytics. IEEE transactions on visualization and
computer graphics, 20(12):1653–1662, 2014.

[38] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and
visualization of multidimensional relational databases. IEEE Transactions on Visu-
alization and Computer Graphics, 8(1):52–65, 2002.

[39] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-oriented dbms. In Proceed-
ings of the 31st international conference on Very large data bases, pages 553–564.
VLDB Endowment, 2005.

[40] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger. Gaussian cubes:
Real-time modeling for visual exploration of large multidimensional datasets. IEEE
Transactions on Visualization and Computer Graphics, 23(1):681–690, 2017.

[41] E. Wu, L. Battle, and S. R. Madden. The case for data visualization management
systems: vision paper. Proceedings of the VLDB Endowment, 7(10):903–906, 2014.

[42] E. Wu, F. Psallidas, Z. Miao, H. Zhang, L. Rettig, Y. Wu, and T. Sellam. Combining
design and performance in a data visualization management system.

[43] E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and T. Kraska. How progressive
visualizations affect exploratory analysis. IEEE Transactions on Visualization and
Computer Graphics, 2016.

	Introduction
	Online Aggregation, Ripple Join, and Wander Join
	Load-n-Go

	Related Work
	Wander Join Algorithm
	Using Wander Join In Visual Exploration
	Data
	Validation Experiment
	Evaluating Common Visualization Queries

	Limitations of Wander Join
	Load-n-Go: Wander Join for Visual Data Exploration
	Evaluating Highly Selective Queries
	Method
	Evaluation

	Evaluating Group By Queries
	Method
	Evaluation

	Conclusion and Future Work

