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Visualizing Time-Varying Particle Flows with
Diffusion Geometry
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Abstract—The tasks of identifying separation structures and clusters in flow data are fundamental to flow visualization. Significant work
has been devoted to these tasks in flow represented by vector fields, but there are unique challenges in addressing these tasks for
time-varying particle data. The unstructured nature of particle data, nonuniform and sparse sampling, and the inability to access arbitrary
particles in space-time make it difficult to define separation and clustering for particle data. We observe that weaker notions of separation
and clustering through continuous measures of these structures are meaningful when coupled with user exploration. We achieve this goal
by defining a measure of particle similarity between pairs of particles. More specifically, separation occurs when spatially-localized
particles are dissimilar, while clustering is characterized by sets of particles that are similar to one another. To be robust to imperfections
in sampling we use diffusion geometry to compute particle similarity. Diffusion geometry is parameterized by a scale that allows a user to
explore separation and clustering in a continuous manner. We illustrate the benefits of our technique on a variety of 2D and 3D flow
datasets, from particles integrated in fluid simulations based on time-varying vector fields, to particle-based simulations in astrophysics.

Index Terms—Computer Society, IEEE, IEEEtran, journal, LATEX, paper, template.
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1 INTRODUCTION

ANALYZING and visualizing flow data are vital tasks across
a wide range of engineering and scientific disciplines, such

as computational fluid dynamics [2], climate modeling [3], and
blood flow [4]. Essential to the understanding of these physical
phenomena is the analysis of flow structures that change over time.
For instance, tracking of vortex cores helps analyze anatomical
structures in blood flow [5], while identifying regions of flow
separation relates to drag on vehicles [6]. The exploration of these
types of structures helps analysts model, understand, and compare
flow.

The data representation of flow plays a vital role in this type
of analysis. Time-varying flow is often represented by a collection
of vector fields that sample a sequence of time steps. Traditional
approaches for flow visualization of time-varying vector fields make
a common assumption that the analysis has access to any vector
value at any point in space-time. For instance, in the visualization
of separating structures, characterized by repelling or attracting
behavior, a common approach is to differentiate the flow map,
which encodes the destinations of flow integrated across time spans.
This is traditionally done in the computation of the Finite-Time
Lyapunov Exponent (FTLE) [7], [8]. Numerical differentiation
requires the integration of the vector field at arbitrary points in
space and time. Another common task is flow clustering [9], [10],
where the ability to integrate the vector field ensures that one has a
representative flow sampling.

Unstructured particle data is being used with increasing
prominence in flow simulation as an alternative to vector fields.
This resurgence can be seen in cosmology, and in particular
magnetohydrodynamics, where Smoothed Particle Hydrodynamics
(SPH) simulations are frequently performed to model the evolution
of gas dynamics [11]. Additionally, mixed representations of
particles and adaptive mesh refinement (AMR) are used for
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simulating dark matter in the universe [12], ultimately resulting
in particle data. In analyzing and visualizing particle data, we no
longer have the ability to arbitrarily sample flow trajectories as we
do in vector fields. While there are some approaches to interpolating
flow trajectories [13] from particles, these can create errors near
highly divergent regions [14]. Moreover, particle data can be sparse
and nonuniformly sampled in space and time, posing challenges for
scattered data interpolation. These characteristics make traditional
tasks in vector field visualization, such as separation and clustering
of flows, far more challenging to address.

To handle particle data we introduce weaker notions of
separation and clustering based on continuous measures of
these structures. Coupled with user exploration, such continuous
measures enable the user to assess the strength of separation
and clustering present in flows. The continuous measures of
these concepts are based on our observation that the notion of
particle similarity underlies these traditional flow visualization
tasks. More specifically, for measuring flow separation we can
analyze the dissimilarity of particles in a local spatial neighborhood.
In clustering flow, similarity plays a key role as it is often a
prerequisite for a clustering algorithm. Hence, once we define an
appropriate similarity measure for particles, we can then perform
these standard flow visualization tasks for particle data.

Nevertheless, particle similarity still faces the problems inherent
in sampling. To handle these challenges we use the methodology
of diffusion geometry to model the space of particles. Namely,
we model the set of particles as a sample of a manifold and
use distances on this manifold to measure particle similarity. The
diffusion geometry is defined with respect to this manifold and
projects each particle into a high-dimensional space, such that
Euclidean distances correspond to robust distances on the manifold,
insensitive to imperfections in particle sampling. More specifically,
these distances are only low for a pair of particles if there exists
a large set of paths on the manifold between the particles. The
distances are parameterized by a scale parameter, which only
permits paths whose lengths are less than the scale. This allows us
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(a) Particle Attraction (b) Particle Clustering

Fig. 1: Our method for computing particle similarities enables the study of attraction (a), equivalent to backward-time separation, and
clustering (b) in particle flows, shown here for the collapse of a molecular cloud core to a protostar [1] in which the magnetic field is
initially misaligned with the rotation axis by 45 degrees. Particle attraction (a) reveals a warped disc structure in the center, known to
prevent collimated outflow [1] and inhibit star formation. Particle similarities (b) reveal broad bipolar outflows as 2 clusters of green and
pink particles, while the inset shows additional clusters in yellow and purple, further evidence in the disruption of collimated outflow.

to measure distances in a multi-scale manner.

The multi-scale property of diffusion geometry allows us
to construct continuous variants of separation and clustering
of particles. Particle separation is computed by analyzing the
covariance of the diffusion geometry in a particle’s local Euclidean
neighborhood. We show how this generalizes the FTLE by allowing
the user to inspect different strengths of separation by adjusting the
scale parameter. Grouping is performed in a user-driven manner
by selecting individual particles, and showing neighborhoods
determined by the diffusion geometry. For small scales, the
neighborhood of a particle are those particles that remain spatially
close over all time steps. For large scales, the neighborhood relates
to clusters found in spectral clustering [15]. For intermediary scales,
the user can inspect the evolution in particle similarity.

Our interface for visualizing particles uses the separation mea-
sure for conveying an overview on features of interest in the data,
in addition to guiding how the user selects particles for inspecting
similarity neighborhoods for further details. Figure 1 shows a
simulation of protostar formation from a molecular gas cloud,
termed Cloud Collapse. Figure 1(a) highlights particle attraction,
computed by measuring backward-time particle separation shown
at the end of the simulation. We allow the user to select a particle
slightly offset from an attracting particle, and then visualize its
neighborhood. In Figure 1(b) we select a set of such particles and
their corresponding neighborhoods, each uniquely colored. Hence
we can inspect the clustering of particles that are collapsing to the
protostar through different trajectories, as shown in the inset.

Our main contributions are summarized as follows:

• We introduce a technique to compute multi-scale similarity
between particles in time-varying flow.

• We utilize this similarity to construct continuous separation
and clustering measures as well as a means to interact with
particle data guided by these measures.

• We show the benefits of our technique for analyzing particle
data produced from fluid simulations and astrophysics.

2 RELATED WORK

Our approach is related to works in time-varying vector field
visualization that aim to compute separation structures, or regions
where flow is either attracting or repelling. These structures provide
counterparts to topological decomposition in steady flows [16],
[17], where a domain partitioning is sought such that each region is
comprised of uniform flow. However in unsteady flow, separation
alone does not necessarily yield a full domain decomposition.
Certain approaches have dealt with this by computing vector
field topology at each time step and tracking critical points
over time [18], or considered improved frames of reference
for tracking [19]. However, studying time-varying instantaneous
topology may poorly reflect the temporal dynamics of flow.

A separation structure frequently used to capture the temporal
evolution of flow separation is the Lagrangian Coherent Structure
(LCS) [8], [20]. The LCS is often computed by detecting ridges in
the Finite Time Lyapunov Exponent (FTLE) [8], which measures
how much a particle diverges from an infinitesimally-close neigh-
borhood of particles over a given time interval. Various techniques
have been employed to visualize the FTLE and LCS in 2D [21]
and 3D [6], [22]. Computing the FTLE for 3D flow data can
be expensive, and significant effort has been devoted to efficient
techniques that do not sacrifice approximation quality [6], [23],
most relying on a meshing of the domain to facilitate access of the
flow map. Agranovsky et al. provide efficient computation of the
LCS in a mesh-free manner via moving least squares [24]. However,
Agranovsky et al. assume they can adaptively seed pathlines for
vector field integration to interpolate the flow map at arbitrary
positions. We do not assume such access, and instead aim to
capture admissible details at multiple scales given the particle
sampling.

One disadvantage with separating structures such as the LCS
is that it can overly summarize the data, and additional detail
on flow features may be hard to access. In particular, the LCS
does not capture the grouping of flow trajectories, where a group
of flows is characterized by some form of flow similarity. For
steady flow, streamline clustering has proven an effective means of
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grouping, and there have been many efforts to segment streamlines
based on different types of similarity measures and clustering
techniques [25]–[27]. For instance, Rössl and Theisel consider the
Haussdorf distance between streamlines as their similarity measure,
and establish a relationship to steady vector field topology [25].
Streamline similarity measures have also been used for querying
patterns in flows [28], [29] as well as streamline seeding for
effective visualization of flow trajectories [30], [31]. Clustering
and similarity-driven analysis have been extended to unsteady flow,
using generative models [9] or Lagrangian-averaged attributes for
dimensionality reduction [32]. However, the time-varying scenario
presents difficulties due to the temporal evolution of similarity,
wherein clusters can become harder to define. In contrast, our
multi-scale similarity enables the user to explore flow clusters at
different levels of detail.

In response to the growing popularity of particle-based flow
simulation, flow visualization of particle data has received recent
attention. Agranovsky et al. extract a collection of particles in situ,
and then allow the user to extract particles at arbitrary seed positions
post hoc through barycentric interpolation [33]. Chandler et al.
improved on the interpolation by using SPH kernels for scattered
data interpolation [13], while follow up work [34] considered
parametric representations of particles for visualization. Closely
related to our approach is recent work in defining an analog to
the FTLE for particle data. Kuhn et al. construct a triangulation
on particle data, and as a discrete representation of time lines they
track the evolution of edges over time, wherein high FTLE values
are those edges which tend to collapse in the evolution [35]. Shi
et al. compute the Jacobian of the flow map directly on particles
by linearizing the Jacobian, and subsequently solve for it in a
local neighborhood of particles in a least squares sense [36].
Our covariance-based measure for particles is related to these
approaches, and generalizes them to the analysis of separation at
multiple scales through diffusion geometry.

Our approach is also inspired by the set of recent works that
construct diffusion-type operators on flow data [37]–[41]. These
approaches are based on the notion of coherent sets [37], or
spatial regions that are robust to small perturbations applied to
the composition of the forward and backward flow maps. To model
the perturbation as a diffusion process defined on particle flows,
these approaches construct different types of diffusion objects such
as the Laplace operator [39], the heat kernel [40], and in particular
space-time diffusion maps [41]. These works mostly consider how
to use these objects for flow clustering flow. In contrast, we show
how using diffusion across all scales can provide a more complete
picture of flow behavior in particles.

Our approach employs diffusion geometry, which relies on
a notion of scale in constructing similarities between particle
trajectories. This is related to scale-space approaches [42] which
analyze field-based data in multiple scales, typically to denoise
or find optimal spatial scales for filtering. Flow analysis has
employed scale-space techniques in various contexts, such as
vortex tracking [43] and detection of FTLE ridges [44]. How-
ever, the construction of multi-scale distances requires different
mathematical tools compared to traditional scale-space methods
on fields. Furthermore, it is nontrivial to extend these techniques
to particle data, as they utilize a vector field for their respective
scale-space approaches.

3 DIFFUSION GEOMETRY OF PARTICLES

Our approach to analyze particle flows uses the methodology of
diffusion geometry [45] to construct similarities between particles.
In this section we show how to construct diffusion geometry
on particles, with careful consideration on computing diffusion
geometry efficiently and handling spatial locality and nonuniformity
for diffusion.

We assume that we are provided a set P of n particles with
starting time t1 over a temporal interval τ , discretized over T time
steps {t1, t2, . . . , tT} such that tT = t1 + τ . Particle positions are
embedded in a d-dimensional space where we consider d = 2,3.
For a particle p ∈ P, we denote pk as the particle’s position at the
time step tk. We refer to a particle’s sequence of positions over
time as its trajectory. We also assume an arbitrary ordering of the
particles in P, and denote the i’th particle as pi ∈ P.

3.1 Computing Diffusion Geometry
In the construction of particle similarities we consider the geometric
structure that is formed by the set of particles. Namely, we assume
that the set of particles P are sampled from a manifold, called the
particle manifold, and we measure distances between particles with
respect to this manifold. This perspective is in contrast to techniques
that construct features on particles and perform analysis with
respect to Euclidean distance in this feature space [9], [28], [32].
These feature-based distances are most descriptive for particles
that are close in distance, but offer less analytic power for particles
that are far. Our particle-based geometric representation captures
meaningful distances on the particle manifold that are both small
and large.

One popular approach for computing distances on manifolds
is through geodesic distances, defined as the length of the shortest
path between a pair of points. In practice, geodesics on a sampled
manifold are approximated by first forming a graph where an edge
exists between a pair of samples if they are in small distance with
respect to some measure, typically Euclidean distance in their
embedding space. Geodesics are then found through shortest paths
on this graph. A drawback of this technique is that it is sensitive to
incorrect edge connections. For instance, if an edge exists between
a pair of samples that are at a large geodesic distance, then all
paths through this edge will be incorrect. This concern is especially
problematic for particle data, where the graph construction must
face the challenges of sparse and nonuniform particle sampling.

We adopt a more robust means of computing distances on
manifolds, using the framework of diffusion geometry [45]. Rather
than compute a single path, diffusion geometry averages the
lengths of a set of paths between a pair of samples, where the
maximum length of paths is limited by a scale parameter. Diffusion
distances have proven useful in shape analysis [46], [47] compared
to geodesics alone, for instance in handling topological noise due to
poor estimation of the local geometry. To extend diffusion geometry
to particle data, we perform the following three steps:

1) Approximate the local geometry of a particle.
2) Convert local geometry into a Markov matrix that mea-

sures the probability of reaching particles on the manifold.
3) Compute diffusion geometry based on eigenanalysis of

the transition matrix.

3.1.1 Local Geometry of Particles
The local geometry of a particle is captured by a similarity kernel
k, where k(pi,p j) ∈ [0,1]. The kernel only assigns high similarity
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to pairs of particles if they are close based on a distance function
between particles dE , and a bandwidth parameter σ that limits
the spatial extent of dE . We employ a Gaussian kernel for k, as is
commonly done in manifold learning [45]:

k(pi,p j) = exp
(
−d2

E(pi,p j)

σ2

)
, (1)

For the distance function dE we use the so-called dynamic distance
between particles [38]. Dynamic distance computes the time
integration of distances between two particles’ positions, and it
may be discretized as follows:

dE(pi,p j) =
1

tT − t1

T−1

∑
k=1

tk+1− tk
2

(
‖pi

k+1−p j
k+1‖+‖p

i
k−p j

k‖
)
(2)

Thus given a particle pi, k will report large values to other particles
whose distance dE is small, relative to the bandwidth σ . The set
of particles with large k captures the local neighborhood of the
particle manifold at pi.

3.1.2 Particle Markov Matrix
We next construct a Markov matrix based on k, denoted W , where
Wi j describes the probability of transitioning to particle p j given
particle pi under a random walk on the particle manifold. The
Markov matrix is computed by first forming the matrix kernel K
where Ki j = k(pi,p j). The i’th row of K encodes the local geometry
of particle pi, and most particles that are not in i’s neighborhood
will be very small. For computational and memory efficiency we
represent K as a sparse matrix by setting its entries to 0 if they are
less than a threshold. We use 10−6 in practice.

The matrix W is computed by row normalizing K:

W = D−1K, (3)

where D is a diagonal matrix such that Dii is the summation of all
entries in the i’th row/column of K. Powers of W can be interpreted
as walking a Markov chain forward, in effect diffusing probabilities
across the manifold as defined by the local geometry k. W s

i j is
the probability of reaching p j from pi for a given exponent s, the
scale parameter. The parameter s may be interpreted as the spatial
scale, intrinsic to the manifold, that a random walk may traverse.
Large values of s permit large path traversals, thus increasing the
transition probability for particles far apart on the manifold.

3.1.3 Diffusion Distances of Particles
Directly using the Markov matrix as our form of particle similarity
is problematic due to its asymmetry. Diffusion distances instead
consider the overlap in probabilities over all particles, parame-
terized by scale. Intuitively, if a pair of particles have mutually
common high transition probabilities to other particles, then their
diffusion distance should be low. More specifically, if we denote
(W s)i· as the i’th row vector of W s, then the diffusion distance, ds,
is

ds(pi,p j) = ‖(W s)i− (W s) j‖. (4)

A practical means of computing diffusion distances is through the
eigenanalysis of W . More specifically, let ul , λl be the l’th pair
of right eigenvectors of W . Then the diffusion distance can be
efficiently computed as

ds(pi,p j) =

(
∑
l≥1

λ
2s
l (ul

i−ul
j)

2

) 1
2

, (5)

where particle i is indexed in ul through subscript. We may
also associate an embedding with each particle Φs(pi) =
(λ1u1

i ,λ2u2
i , ...,λmum

i ), such that the diffusion distance can now be
expressed as d2

s (pi,p j) = ‖Φs(pi)−Φs(p j)‖2. The embedding Φs
is known as the diffusion geometry.

Since we would like to faithfully represent the particle manifold
through the diffusion distances, the distances should be insensitive
to nonuniform sampling of the particles. To handle this we
renormalize the entries of W in order to factor out density.
Renormalizing has the effect of recovering the intrinsic geometry
of the manifold, see Coifman and Lafon [45] for details.

3.2 Landmark Diffusion Distances
A practical issue with computing diffusion distances is the
computational complexity of performing the eigendecomposition of
the matrix W . Although W is sparse, as discussed in Section 3.1.2,
its eigendecomposition can still be expensive when the number of
particles n becomes large, for instance exceeding 106.

To address this we employ a landmark technique to approximate
the eigenvectors and eigenvalues of W . We extend the landmark-
based spectral clustering technique of Chen & Cai [48] to the case
of diffusion geometry. Namely, suppose that we have a set of nl
landmarks I ⊂ {1...n}. We compute affinities k between each land-
mark particle pi, i∈ I and every other particle p j to form a landmark
similarity matrix Kl ∈ Rn×nl . We then use Kl to form a low-rank
factorization of W 2 by constructing Wl = D−1

r KlD−1
c (KlD−1

c ))ᵀ.
Here Dr ∈ Rn×n and Dc ∈ Rnl×nl are diagonal matrices formed by
taking the row sums and column sums of Kl , respectively, in order to
yield the normalized affinity matrix Wl . Since Wl is of rank at most
nl , its eigendecomposition can be computed from a sparse matrix
of dimension nl×nl [48]. Assuming Wl is a good approximation to
W 2, then its eigenvectors and eigenvalues will also be close, hence
our diffusion distances will be accurate estimates.

The quality of this approximation is dependent on the chosen
landmarks. We would like the landmarks to provide a good
geometric coverage of the domain, in order to capture flow features
in the data. However, we would also like our landmark scheme to
be computationally efficient, and scale well as a function of the
number of particles and the number of time steps.

To this end, we perform a modified version of farthest point
sampling. First, we select a particle at random to be a landmark.
The next selected particle is the one furthest in distance to the
previously chosen particle. We use dE to measure distance between
particles, but only at uniformly-spaced temporally subsampled
positions for efficiency considerations, in practice using a temporal
resolution of 5. Each subsequent landmark is chosen such that
its minimum distance to previously sampled landmarks is the
largest amongst candidate particles. We find this scheme produces
landmarks representative of features in the data, and is reasonably
efficient to compute. It has complexity O(n ·nl), compared to using
all time steps, which would be O(n · nl ·T ). Nevertheless, when
both n and nl are large then landmark selection can become the
computational bottleneck. We conduct an experimental evaluation
on performance and computational efficiency in Section 6.2.

3.3 Bandwidth Selection
The spatial bandwidth σ (Eq. 1) affects the interpretation of the
diffusion distances. We would like σ to be in the proper range
to capture the local geometry of the manifold k. Particle paths,
however, present two main difficulties in using a global σ for
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similarity. First, the scale of particle positions as a function of time
can significantly change, for instance in astrophysics simulations
particles are often expanding or collapsing over time. Secondly,
within a time step the density of particles can vary across different
spatial regions, and a single σ may fail to capture the geometric
structure of all regions.

To handle these cases for our landmark-based formulation, we
employ spatiotemporal bandwidths σk,i for each time step tk and
particle landmark i. More specifically, for particle pi at time tk we
gather its nearest neighbors, where we fix the number of neighbors
to 6, and take σk,i as the average distance to its nearest neighbors.
Then for an arbitrary particle j, its kernel similarity to particle
landmark i is modified as follows:

k(pi,p j) = exp

(
−1

τ

T

∑
k=1

‖pi
tk −p j

tk‖
2

(ασk,i)2

)
, (6)

where without loss of generality we assume uniformly-spaced
temporal sampling. α is a user-defined parameter that scales the
bandwidth, and we experimentally found α ∈ (0.75,1.75) to be
reasonable. The expression in the exponential is a generalization
of the distance function dE , taking into account sampling variation
across space and time. Furthermore, note that it is only necessary to
define bandwidths with respect to the landmark particles since the
distribution of landmarks limits the scale at which we can analyze
the geometry.

3.4 Particle Separation and Time
Diffusion geometry of particles is also dependent on the time
parameters t, τ , and in particular T . For T = 2 a particle is
comprised of its starting and ending position. In this case k will
only report high similarity for particles that start and end close to
each other. This behavior is related to the FTLE, which measures
the maximal spatial distortion of the flow map Ψτ

t : Rd → Rd

defined from t to t + τ . More specifically, distortion in the flow
map correlates with high variation in k for particles close in spatial
position at t1.

In contrast, for T > 2 particles must remain close over all
times for k to report high similarity. The appropriate choice
of time discretization is application dependent. Analysis with
T = 2 does not consider particle positions at intermediary times,
whereas for T > 2 the averaging of particle positions can make
particle separation less discriminative. Unless otherwise specified
we analyze particles using all available time samples. Where
comparison is appropriate we use a time-averaged analogue of
the traditional FTLE, which we denote t-FTLE. Specifically, we
replace Ψ with Ψ̄ a modified flow map whose range is the space
spanned over all particles in the time range {t2, t3, . . . , tT}, i.e.
Ψ̄τ

t : Rd → R(T−1)d . The maximal spatial distortion of Ψ̄ measures
average particle distortion over all sampled times.

3.5 Diffusion Scale
The scale s in Equation 5 that parameterizes diffusion distances
enables a meaningful and robust computation of particle separation
and similarity. Diffusion distances for a pair of particles will be
small only if these particles are connected by paths on the manifold
whose lengths are proportional to the scale. We find that particles
separated by LCS have high diffusion distance since manifold paths
must travel around the ridge. Thus, the scale acts as an indicator of
separation strength; specifically, it is proportional to the distance
on the manifold necessary to cross LCS. Conversely, if the flow has

weak separation, such as mostly laminar flow and swirling motions,
then local similarity as captured by k in Equation 1 will rapidly
diffuse on the manifold for small scales. Particles in such regions
will have low diffusion distances at small scales, indicating that
they are highly similar.

Furthermore, diffusion distances are computed using a set
of paths on the manifold, not just a single path. Thus diffusion
distances are robust to small errors in local geometry approximation,
particularly as the scale increases [47]. For particle separation, if a
small set of particle pairs separated by a ridge are similar according
to Equation 1, then diffusion distances are capable of filtering out
these false positives. For particle similarity, false negatives defined
by particles not similar based on Equation 1 will nevertheless have
low diffusion distance if a sufficiently large number of nearby
particles are highly connected on the manifold.

We make these concepts more precise through an example,
using an analytically-defined flow map that has a separation ridge
which varies in strength. We extend the Sine Ridge example of
Kuhn et al. [49], whose flow map is characterized by a sine-shaped
ridge of a user-specified strength. To vary separation strength we
use Kuhn et al.’s domain deformation [49] and modify the flow
map as follows:

φsine(x, t) =

(
x√

x2+(1−x2)e−2t p(y)

y+ t

)
(7)

where t is the time step and p is a function that controls the ridge
strength. The function p is defined such that p(−4) = 0.05 and
p(4) = 4 given the spatial domain [−2,2]× [−4,4], and performs
linear interpolation as a function of the y coordinate. High values
of p result in the divergence of particles seeded near the center
of the sine function. We perform uniform seeding in the spatial
domain and consider particles starting at t1 = 0 for a duration of
τ = 1, for T = 100 time steps.

In Figure 2(a) we show the t-FTLE, whose strength increases
from the bottom to the top of the domain due to the ridge strength
function p. We show a subset of example trajectories in Figure 2(b)
that demonstrate this divergence, and highlight four pairs of
particles that cross the ridge. We compute diffusion distances over
a sequence of scales for these particles as shown in Figure 2(c).
To compare distances across scale we divide the squared distances
by their squared norms. Namely for particles pi and p j we divide
ds(pi,p j) by (‖Φs(pi)‖2 + ‖Φs(p j)‖2), a standard technique for
normalizing diffusion geometry [50].

We observe that particle pairs on opposite sides of the ridge
where the strength is low result in diffusion distances that sharply
decrease as a function of scale, and vice versa for particle pairs
where the ridge strength is high. Since particles that cross ridges
are unlikely to be connected in their local geometry, the spatial
scale necessary for paths to connect these particles on the manifold
is large, and is a function of the shape of the ridge. Thus the
red-colored pair’s diffusion distance is smaller than the green pair’s,
due to a smaller spatial scale necessary to cross the ridge.

We next compare diffusion distances for a pair of particles
that cross a ridge, and a pair of particles that do not. Figure 3(a)
highlights three particles in the Sine Ridge flow, and we compare
the distances ds(x,y) to ds(x,z) for a sequence of scales in
Figure 3(b). We observe that for small scales both distances are
large, but as the scale increases ds(x,y) becomes smaller than
ds(x,z). The separation ridge causes paths on the manifold between
x and y to connect at a smaller scale than those between x and z.
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(a) t-FTLE (b) Particles (c) Diffusion Distances

Fig. 2: We show the t-FTLE (a) and sample particles (b) for Sine
Ridge, and the diffusion distances (c) as a function of scale, where
the colors of each curve (c) correspond to the colored pairs of
particles (b). Note that pairs of particles that cross stronger regions
of the ridge have a higher diffusion distance across scale than those
that cross weaker regions. Sample particles increase in brightness
to indicate forward time.

Figure 3(c) shows particles that are color-mapped based on
distances from x as defined by dE in Equation 2. We find that
dE(x,z)< dE(x,y), despite no ridge present between x and y. In
Figures 3(d) and (e) we compare to diffusion distances from x for
scales s = 100 and s = 300 respectively. Note that as s increases,
ds(x,y) < ds(x,z). Thus our particle manifold model enables us
to compute distances that respect separation ridges in flow, unlike
using more standard distances such as dE . Furthermore, note that ds
does in fact decrease as the scale increases for particles crossing the
ridge. This is because the local geometry estimation of Equation 1
assigns similarity to particles that cross the ridge. However, ds
remains lower for particles near y due to the much larger number
of paths connecting particles on the left side of the ridge.

4 COMPUTING AND VISUALIZING PARTICLE SEPA-
RATION

In this section we illustrate how to use diffusion geometry for the
purposes of computing and visualizing particle separation. We use
the multi-scale property of our distances to compute a scale-based
proxy for the FTLE for particle data. The user may interactively
adjust the scale to visualize how particle strength varies.

4.1 Multi-Scale Particle Separation
We first show how to approximate the FTLE and t-FTLE from
particle data, and then how this may be extended with diffusion
geometry. Recall that the FTLE analyzes the Jacobian J of the
flow map. We are only given a sampling of the flow map in
the form of particle data, thus we are unable to approximate
the Jacobian through finite differences of the flow map, as is
traditionally done [7], [8]. Instead, we can approximate the Jacobian
through the covariance of the particles:

C(pi) = ∑
p j∈N(pi)

(p j
T ′ −pi

T ′)(p
j
T ′ −pi

T ′)
ᵀ, (8)

where N denotes a local neighborhood of particles with respect to
a given time step, either t1 or tT , and p j

T ′ denotes the vector of all
positions excluding the originating time, either [t2, tT ] or [t1, tT−1],
which respectively corresponds to forward-time or backward-time
separation. It can be shown [51] that, under certain sampling

(a) Selected particles
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ds(x,y)
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(b) Diffusion distances

(c) dE(x, ·) (d) d100(x, ·) (e) d300(x, ·)

Fig. 3: We highlight selected particles x, y, and z in Sine Ridge
(a) and compare ds(x,y) to ds(x,z). Distances from x as defined by
dE are color-mapped (c) compared to ds in (d) and (e) for s = 100
and s = 300, respectively. Note that dE(x,z) < dE(x,y) despite
the separation ridge crossing x and z. Diffusion distances respect
separation, as shown in (b) and (d)-(e) as we increase scale.

conditions, the covariance is a first-order approximation to JᵀJ, the
right Cauchy-Green tensor, and is the mathematical object used to
compute the FTLE [8]. Namely, we approximate the FTLE as:

γ(pi) =
1
τ

log
(
λ1
(
C(pi)

))
, (9)

where λ1 is the maximum eigenvalue. Note that for T = 2 and T > 2
this is an approximation of the FTLE and the t-FTLE, respectively.

We can extend this formulation with our multi-scale similarities
by directly using the diffusion geometry Φs in place of the
particle positions. More specifically, the diffusion geometry-based
covariance, or diffusion covariance, follows as:

Cs(pi) = ∑
p j∈N(pi)

(Φs(p j)−Φs(pi))(Φs(p j)−Φs(pi))ᵀ, (10)

and the corresponding multi-scale FTLE for particles:

γs(pi) =
1
τ

log
(
λ1
(
Cs(pi)

))
, (11)

where s is the scale parameter. For small s the diffusion distances
are proportional to Euclidean distances in a small neighborhood,
up to a scale factor that depends on the local kernel similarity
k. Since the eigenvalues of the covariance matrix are invariant
to translation and rotation, γs will be proportional to γ in this
setting. As s increases, γs will only preserve details captured in
diffusion distances. For instance, weak ridges will naturally be
filtered out since a large s implies that particles separated by
such ridges will eventually become similar, due to the diffusion
of similarities. Analogous with Equation 8, if N is defined with
respect to t1 then we compute forward-time separation, or particle
repulsion. Conversely, if N is defined with respect to tT then we
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(a) FTLE (b) Particle Path Separation

(c) Diffusion Separation s = 28 (d) Diffusion Separation s = 78

(e) Diffusion Separation s= 145

Fig. 4: We show particle and diffusion-based separation measures
(b)-(e) compared to FTLE (a) for uniformly-seeded particles. For
diffusion separation, increasing the scale filters out weaker ridges,
leading to similar separation as the FTLE, up to a scale.

compute backward-time separation, or particle attraction. Unless
otherwise specified, for all results in the paper we use forward-time
separation.

2D Separation Example To highlight our separation measure,
we use the Double Gyre dataset [8]. It is defined as follows:

v(x,y, t)x = −πAsin(π f (x, t))cos(πy)

v(x,y, t)y = πAcos(π f (x, t))sin(πy) ∂

∂x f (x, t)

where

f (x, t) = ε sin(ωt)x2 +(1−2ε sin(ωt))x

and A = 0.1, ω = π

5 , and ε = 0.1. It is characterized by two
distinct regions of recurring swirling motion that are separated
by a dominant ridge. We uniformly seed particles in the domain
[0,2]× [0,1], and compute particles by integrating the vector field
starting at t1 = 0 for a duration of τ = 2π . Since the Double Gyre
is a standard benchmark dataset for FTLE computations [8], [44],
we follow this convention and set T = 2.

Figure 4(a) shows the FTLE, Figure 4(b) shows the particle-
based covariance measure γ , and Figures 4(c-e) show our diffusion-
based covariances for different scales γs. We find that our separation
measures are able to capture the main ridge in the Double Gyre,
however note that scale s = 145 results in the filtering of weaker
ridges, and better corresponds to the FTLE.

In Figure 5 we show a similar setup, except that we consider
particles starting at t1 = 2π for a duration of τ = 2π , wherein
particles are uniformly seeded at time 0 and integrated to time
4π . In contrast to the previous example, this results in a highly
nonuniform set of particle positions at t1, thus posing an additional
challenge for estimating particle separation. We see that our covari-
ance measures are fairly insensitive to the sampling distribution,
and able to capture the primary ridge as well as weaker ridges, with
increasing scale filtering these out.

3D Separation Example We next show our diffusion-based
separation measure for an analytic steady periodic 3D flow known

(a) FTLE (b) Trajectory Separation

(c) Diffusion Separation s = 28 (d) Diffusion Separation s = 78

(e) Diffusion Separation s= 145

Fig. 5: We illustrate our separation measures (b)-(e) compared to
FTLE (a) when the seeding is nonuniform. We are still able to
capture the primary ridge, as well as weaker separation regions,
despite the nonuniformity.

as the ABC (Arnold-Beltrami-Childress) Flow. The vector field
equations are defined as follows:

v(x,y) =

Asin(z)+C cos(y)
Bsin(x)+Acos(z)
C sin(y)+Bcos(x)

 . (12)

We consider particles that are uniformly-seeded in the domain
[0,2π]3 and integrate particles starting at t1 = 0 for duration τ = 8,
with T = 40 samples. To visualize the separation field in 3D we
opacity map particles via the transfer function γ̂s

a, where γ̂s rescales
γs to between [0,1] based on the minimum and maximum values
of γs across all particles, and a is a parameter the user can tune to
adjust the opacity. Figure 6(a) shows the diffusion-based separation
for the ABC flow. We can clearly make out sheets which partition
the domain into regions of uniform flow.

5 VISUALIZING PARTICLE SIMILARITY

Diffusion distances are used to compute particle similarity, such
that a low distance implies high similarity. In this section we discuss
techniques for visualizing particle similarity through interacting
with diffusion distances. We first describe techniques for visualizing
and interacting with particle similarity, and then discuss two
important characteristics of particle-based diffusion distances that
enable meaningful user interaction: objectivity, and the relationship
to coherent sets.

5.1 Interacting with Diffusion Distances

We have developed two techniques to visualize particle similarity.
First, we allow the user to select a particle, and form a scalar field
by computing diffusion distances to to all other particles. Particles
are color-mapped based on this field, and in 3D we opacity map
particles in the same manner as separation, allowing the user to
adjust transparency. Furthermore, we enable the user to compare
diffusion distances by selecting multiple particles, followed by
applying a unique color map to each distance scalar field, and
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(a) Diffusion Separation s = 1000 (b) Particle Path Neighborhoods s = 20 (c) Particle Similarities s = 20

Fig. 6: We show how diffusion-based separation (a) and similarity (b)-(c) aids in extracting the six clusters of the ABC steady flow dataset.
The neighborhood trajectories (b) depict each cluster from (a) as having a swirling motion, contained by the separating boundaries (a).

(a) Diffusion Separation s = 7

(b) Similarities s = 7

(c) Particle Neighborhoods

Fig. 7: We show separation (a), similarity from a set of source
particles (b), and their particle trajectory neighborhoods (c) for 2D
Cylinder.

averaging the fields to produce a single scalar field. The brightness
value of each color encodes distance, where small distance is
proportional to high brightness.

We additionally use the diffusion distances for similarity-based
seeding in visualizing particle trajectories. Namely, for a given
selected particle, we gather all particles whose diffusion distance
is less than a fixed threshold. To reduce clutter, we allow the user
to set a maximum number of particle trajectories, and subsample
particles through farthest point sampling under diffusion distance,
in order to ensure well-spaced particle particle trajectories with
respect to the diffusion geometry. Increasing the scale naturally
expands the neighborhood of particles. We also allow the user to
select multiple neighborhoods of particles for comparison.

2D Similarity Example We demonstrate our tools for ex-
ploring similarity by considering particles produced from a 2D
fluid simulation, which we denote 2D Cylinder. We follow the
experimental setup of [52] by placing a cylinder in the center of a

2D domain, with boundary conditions prescribed by a Poiseuille,
parabolic velocity profile, and a Reynolds number of 300. The fluid
simulation software Gerris [53] is used to perform the simulation.
The result of the simulation is a von Kármán vortex street that
forms in the wake of the cylinder, and we would like to see if our
similarity measure allows us to group the resulting vortices. We
analyze particle flows starting at time t = 10.6 for a duration of
τ = 1.8 with T = 75 time steps, and use a small scale of s = 7
in order to capture the fine-grained vortex features. Figure 7(a)
shows our separation measure, highlighting the general shape of
the vortex street. Figure 7(b) shows a set of distance fields that are
formed by selecting particles enclosed by these separating regions.
We can observe the spatial extent of individual vortices through
distance selection. Figure 7(c) shows particle neighborhoods for
each of the selected particles. The neighborhoods illustrate the
formation of particle groups in each vortex.

3D Particle Selection In order to provide the user a useful
means of selecting particles for similarity visualization in 3D, we
guide selection by separation. We provide two mechanisms for
selection. The first is done by inverting the opacity mapping of
separation through (1− γ̂s

a), which displays grouped particles, or
particles that are dual to separation. These represent tight groups
of particles that contain similar motion. Through opacity mapping,
the user can select grouped particles that are sufficiently opaque, as
determined by a predefined threshold. A limitation of this technique
is that grouped particles tend to form large volumetric regions, thus
occlusion can lead to difficulties in performing selection. On the
other hand, separating particles form 1D and 2D structures that
provide a summary of the data with reduced visual clutter, and
tend to bound regions of grouped particles. Hence we also use
separating particles as a mechanism to select grouped particles.
For a selected separating particle that is sufficiently opaque, as
determined by γ̂s

a, we select a nearby grouped particle. Namely,
we find the closest grouped particle that is in front of the separating
particle, based on the camera viewpoint. This allows the user to
obtain an overview of the flow via separation, followed by a more
detailed view of distances through particle selection.

We show 3D selection for the ABC flow. In Figure 6(b) the
user selects grouped particles, and we show their corresponding
neighborhoods. Note that this depicts both individual groups, and
how motion behaves within groups, i.e. swirling motion in the
ABC flow. Figure 6(c) shows color and opacity-mapped diffusion
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(a) Particles (b) Clustering (c) Distances

Fig. 8: We show particles in the Four Centers flow (a), the results
of spectral clustering of particles (b), and diffusion distances (c)
from four source particles indicated by arrows. Note how the
distances induce a partition of the domain consistent with spectral
clustering.

distances for these selected particles, and one can observe that we
recover the 6 main clusters of the ABC flow, as established from
prior work [41].

5.2 Particle Similarity and Coherent Sets

For large scales, diffusion distances begin to resemble a coarse
clustering of particles, and it can be shown [54] that diffusion
distances are related to spectral clustering from a random walks
perspective. As scale increases, the diffusion distances are mostly
affected by the eigenvectors ui with the largest eigenvalues, and it is
these eigenvectors that are employed for spectral clustering. Spec-
tral clustering of particles is a common technique for computing
coherent sets in flows [38], [41]. For instance, in Hadjighasem et
al. vortices are extracted as coherent sets using spectral clustering,
and background flow that does not comprise vortices is separated
and considered incoherent [38]. Our technique can thus be used as
a way to access coherent sets, but in an interactive manner that is
driven by scale. Interactively editing the scale allows the user to
explore the strength of clusters, and thus provides for a soft notion
of coherent sets modulated by scale.

We illustrate this relationship with a steady vector field example,
where a clustering of the domain corresponds to vector field
topology. We use the Four Centers flow, comprised of four vortices
which partition the domain, and whose vector field is defined by:

v(x,y) =

(
−x · e−x2−y2 · (2y2−1)
−y · e−x2−y2 · (2x2−1)

)
(13)

We uniformly seed particles in the domain [−2,2]2, and compute
particles by integrating the vector field starting at t1 = 0 for a
duration of τ = 10, using T = 500 time steps. Figure 8(a) shows
example particles, and results for spectral clustering are shown in
Figure 8(b), highlighting the four regions of uniform flow. Particles
are visualized using diffusion distances from four different source
particles in Figure 8(c) for a scale of s = 300. We show particle
positions at time t1 and color map each particle based on its smallest
distance to all source particles. We observe that particles grouped
by diffusion distance coincide with cluster regions. Particle distance
selection can thus be used as a form of interactive clustering, where
the user can select a particle and inspect the group of particles that
have low distance to this particle.

(a) FTLE

(b) Original Particles (c) Transformed

Fig. 9: For the Spiral Focus flow we show its t-FTLE (a), particles
and corresponding distances (b), as well as the particles undergoing
a time-varying rotation, and the resulting distances (c). Note the
distances remain unchanged when the particles undergo such a
coordinate change.

5.3 Objectivity of Similarity
Our particle-based similarity is objective, an essential property for
meaningful user interaction. Objectivity refers to invariance under
smooth, time-varying rigid transformation coordinate changes [55]

p̃t = Qtpi
t +bt , (14)

where Qt and bt is the rotation and translation at time step t,
respectively, and p̃t represents pt undergoing the transformation.
The particle diffusion geometry is objective due to the distance dE
used in the kernel function k. The distance dE is strictly a function
of Euclidean distance between particle positions, which is invariant
to rigid transformations. Since the remaining steps of constructing
diffusion geometry only make use of the kernel matrix K, it follows
that the diffusion geometry is objective.

Objectivity is a useful property to satisfy when a coordinate
change of the flow can obscure the flow’s features, in particular
vortices [56]. We illustrate this through an example using an
analytical flow map, namely the Spiral Focus flow of Kuhn et
al. [49]. This dataset is characterized by swirling motion that
causes flow divergence, with one set of flow moving towards
the center, and another set moving away. We consider particles
uniformly seeded in the domain [−4,4]2 starting at time t1 = 0 for a
duration of τ = 2.5, using T = 100 time steps, see Figure 9(b)-top
for example particles. Figure 9(b)-bottom shows color-mapped
distances for particles at t1, where we select four different source
particles from which to compute distances. Note how the distances
respect the separation ridges found in the t-FTLE in Figure 9(a).
We perform a rotation of the flow map by prescribing a rotating
coordinate change with angular velocity of 25. Figure 9(c)-top
shows example particles from this transformation and Figure 9(e)-
bottom shows distances from the same source particles. We find
these diffusion distances are the same as the distances of the
original particles.

The 2D Cylinder example of Figure 7 further emphasizes the
benefit of objectivity for visualizing particle similarity. In this
example, particles contain a strong translational component due to
the initial velocity conditions of the simulation. Due to objectivity,
similarity neighborhoods correspond to a reference frame where
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(a) Diffusion Similarities s = 10

(b) Diffusion Similarities s = 50

Fig. 10: We show multi-scale analysis of the Heated Cylinder flow.
We show our diffusion separation field in addition to a set of user-
selected source points and their diffusion distance neighborhoods
for two different scales.

particles are not advected by this translation, and thus the selected
clusters correspond to the vortices shed behind the cylinder.

6 RESULTS

We have applied our technique to a variety of datasets, see
Table 1 for dataset statistics, parameters used for each dataset,
and computational timings in Table 1.

Implementation Details As discussed in Section 3.1.2, the
kernel matrix K (Eq. 3.1.2) is sparse, enabling us to assemble K
by performing neighborhood queries. However, performing high-
dimensional neighorhood queries using time-dependent bandwidths
(Eq. 6) is expensive when the number of particles is large. For
efficient computation of neighborhoods we use the positions at the
starting time step t1 to search for a particle’s candidate neighbors,
and then compute dE over all time steps for these neighbors. This
approximation avoids the costly operation of performing neighbor
queries in the high-dimensional space as determined by dE , and
results in K being a subset of the neighbors computed using dE .
However, in practice we find that through diffusion particles that are
not initially neighbors due to this approximation become similar for
small diffusion scales. Last, the computation of covariance-based
separation in Eqs. 8 and 10 requires the definition of a spatial
neighborhood at each particle. For simplicity, we use the k-nearest
neighbors to each particle where k = 9,27 for d = 2,3, respectively.

6.1 Experimental Results
Heated Cylinder In this example we consider 2D flow simulation
of convection from a heated cylinder. This results in a turbulent
plume and the formation of vortices nonuniformly distributed
throughout the domain. We consider particle flows that start at
t1 = 16.6 with an integration duration of τ = 1.3, and uniformly
sample T = 75 time steps. Gerris [53] is used to perform the
simulation.

Figure 10 shows the results, where we highlight separation, and
superimpose separation with user-selected similarity neighborhoods
for two different scales. Vortices can be seen from the separation
boundaries, while the individual neighborhoods are typically

(a) Top-Down View (b) Unoccluded Neighborhoods

(c) Separation Side View 1 (d) Similarity Side View 1

(e) Separation Side View 2 (f) Similarity Side View 2

Fig. 11: We show results on 3D Cylinder at different views of the
domain for s = 14, visualizing separation structures in (c) and (e),
similarity in (b), and their combined visualizations in (a), (d), and
(f). Note that the shapes of the neighborhoods suggest the non-2D
flow behavior of the shed vortices.

Fig. 12: For the 3D Cylinder dataset we select neighborhoods
on opposite sides of a ridge, and show particles in each of these
neighborhoods. Note that swirling flow is demonstrated for particles
in the shed vortex of the red neighborhood, while laminar flow is
shown in the green neighborhood.

bounded by the separation, and help to convey the shape of the
vortices. By analyzing the separation from small scale (a) to large
scale (b) we can observe the strength of certain vortices. For
instance, the vortex highlighted in the red box breaks apart at
its top boundary as we increase the scale. This is supported by
its neighboring particles at the large scale, where they expand
out of this region. We can also observe how vortices that are
close in Euclidean distance can blend together as scale increases,
highlighted in green, while other nearby vortices retain their
neighborhood, highlighted in yellow. This suggests that the latter
vortices are stronger than the former, in that on the particle manifold
it takes a shorter distance to walk between the vortices highlighted
in green, compared to those highlighted in yellow.

Flow Over 3D Cylinder This simulation is a 3D analogue
to the 2D Cylinder simulation discussed in Figure 7, following
the experimental setup of Kanaris et al. [52]. A 3D cylinder is
placed in the center of the domain, fully occupying the spanwise
direction. The Reynolds number is set to 300. We consider particle
flows starting at t1 = 9.6 with an integration duration of τ = 2.3
for T = 25 time steps, and use Gerris [53] to run the simulation.

Figure 11 shows the separation field and neighborhoods of user-
selected particles at scale s = 14, with views showing both sides of
the domain, as well as the top of the domain. For visual clarity, in
(c)-(d) and (e)-(f) we filter out particles for which z > 0 and z < 0,
respectively. As was studied in [52], we similarly obtain vortex
shedding that is nonuniform in the spanwise direction, suggesting
that the flow is not merely two-dimensional. For instance note
that on one side (e)-(f) the vortices are thinner compared to (c)-
(d). The top-down view (a) and the unoccluded set of particle
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name num particles num landmarks time steps α landmarks (s) kernel (s) eigendecomposition (s)
Double Gyre 7.2K 1K 100 1 0.19 0.22 5.4
2D Cylinder 19.4K 5K 75 1 2.92 0.98 21.3
Sine Ridge 40K 5K 100 0.75 5.53 1.62 35.7

Four Centers 40K 5K 500 0.75 5.96 0.93 36.1
Spiral Focus 90K 5K 100 0.75 12.9 1.91 37.83

ABC 262K 5K 40 1.25 56.3 30.4 52.5
Heated Cylinder 264K 15K 75 0.85 104.8 10.1 110.0

Dark Sky 500K 25K 98 0.9 497.0 99.2 208.1
Cloud Collapse 837K 25K 54 0.9 544.5 77.5 192.6

3D Cylinder 1M 25K 25 0.9 707.7 118.9 243.6
Dust Settling 1M 25K 25 1.0 627.7 119.1 282.2

TABLE 1: Dataset statistics, parameters used, and computational timings for experiments. The α parameter is the bandwidth scale used
in Eq. 6. The last three columns are timings, in seconds, for computing landmarks, computing the kernel matrix K, and performing the
eigendecomposition, respectively.

neighborhoods (b) shows the distribution of the vortices over the
domain, confirming this variation.

Figure 12 provides a closer inspection on separation. We select
two particles on opposite sides of a separation sheet, where a
vortex exists on one side but does not exist on the other side. We
show particles seeded in these two neighborhoods, showing how
separation occurs: within the enclosed vortex identified by the
red neighborhood, particles contain swirling flow whereas those
not within a vortex, the green neighborhood, are of laminar flow.
Viewing the particle paths, as in the 2D Cylinder, shows how
our method is objective, in that despite the strong translational
component to the particle flow, we can still group particles based
on their swirling motion.

Dust Settling We analyze data from astrophysical fluid dynam-
ical systems and the formation of protoplanets. We consider the
problem studied in Lorén-Aguilar & Bate [57] which investigates
the impact of a baroclinic instability, or the misalignment of
gradient pressure from density pressure, on dust settling. In this
SPH simulation, particles are initially distributed inside of a torus
and rotate around the torus’ gravitational center, while the mixing
of gas and dust particles results in the dust particles to slowly move
towards the center. It was shown in [57] that baroclinic instability
results in toroidal vortices. This process can potentially inhibit
planet formations.

We analyze dust particles to observe if their motion also
suggests a baroclinic instability. We have taken particles produced
via the simulation starting from t1 = 631 for duration τ = 47 and
sampling T = 25 time steps. Figure 13(a) (left) shows example
particles over this temporal range as viewed from above. Particles
rotate around the center at different angular velocities, where
particles closer to the center move at a higher velocity. Over time
this results in the outward propagation of particles from the center
and the formation of ring structures. Our diffusion separation
measure captures individual rings as shown in Figure 13(a) (right),
while the similarity neighborhoods show how particles are grouped
in their motion. We find that particle separation is correlated with
dust density (c.f. [57] Figure 3). Inspecting a cross section of
the torus in Figure 13(b), we can observe additional structure in
the separation. Formation of separation occurs in a manner that
is related to the formation of the baroclinic instability, and the
presence of toroidal vortices (c.f. [57] Figures 1,2).

Dark Sky We consider flows produced from the Dark Sky [58]
dataset, a cosmology simulation of the large-scale universe in
which particles expand and form into galaxies. The expansion
results in particles forming dense and compact clusters, curve-like

(a) Separation and Similarity s = 50

(b) Separation Side View

Fig. 13: We show particle separation and similarity for dust settling
in the formation of protoplanets (a), along with a cut-away side
view (b). Despite the dominant rotational motion exhibited by the
particles in (a)-left, we are still able to extract ring-like structures
in the separation. The side view (b) shows how separation regions
progress radially outward from the torus center.

filaments, surface-like sheets, and empty voids. Previous visual-
ization techniques have considered how to efficiently render the
large amount of particles in such simulations [59] and summarize
filament structures via topological methods [60]. In contrast, we
use our technique to visualize the evolution of particle expansion
and the resulting formation of clusters. We use the 2M particle
dataset from the SciVis 2015 Contest [61] for t1 = 0, a simulation
duration of τ = 98, number of sampled time steps T = 99, and use
a 500K subsampled set of particles for analysis and visualization.

In Figure 14 we illustrate how our method complements density-
based visualization for particle positions at the last time step tT .
Figure 14(a) shows the log-density field d of the particles at tT ,
computed by a k-nearest neighbor density estimate [62]:

d(pi
tT ) = log

(
∑
j∈Ni

1

‖pi
tT −p j

tT ‖

)
, (15)

where Ni is the set of pi’s nearest neighbors at time tT , and k is
set to 27. Figure 14(b) shows our separation measure where we
use backward-time separation in Equation 10, such that diffusion
covariance uses spatial neighborhoods at time tT . Note that a
particle at tT has high separation measure if particles in its
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(a) Density

(b) Separation s = 15

(c) Zoomed-in View

(d) Separating Particles

Fig. 14: For the Dark Sky dataset at the last time step we show
how dense clusters (a) are surrounded by particles of attraction
(b), or particles that have high backward-time separation. This is
further emphasized in the zoomed region (c), and the set of highly
attracting particles (d) demonstrate how the boundary was formed.

(a) Separation s = 85 (b) Similarity Neighborhoods

Fig. 15: We show particle repulsion in Dark Sky through forward-
time separation at the start of the simulation (a), highlighting
particles for similarity neighborhood selection. The neighborhoods
(b) are contained within the separating regions, suggesting their
formation into dense clusters as the simulation progresses.

spatial neighborhood at tT have large variation in their diffusion
geometry, indicative of diverging particle behavior. Spatially-close
particles at tT of high separation thus suggests particle attraction,
where particles may have different origins, or more generally
diverge in flow over all time steps. We find that the presence
of clusters (a) is correlated with attracting particles (b), in that
particle neighborhoods gradually break up over time in order to
form tight, dense clusters, and separating particles form cluster
boundaries. This is further highlighted in Figure 14(c), where we
show a zoomed-in cluster’s density and separation, respectively.
Furthermore, we show particle trajectories in Figure 14(d) for
these high-separation particles, where the per-time step bounds of
particle positions are rescaled for visual clarity. For the particular
zoomed-in cluster we can observe that there are two main groups
of particles that diverged to form its boundary.

Figure 15 depicts a different perspective of Dark Sky by
showing particle separation at the first time step t1, where separation
indicates particle repulsion. We observe that particle repulsion leads
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Fig. 16: We compare the effectiveness of different landmark
selection schemes, for subspaces spanned by different amounts of
eigenvectors. We find that T-FPS performs about as well as FPS
and is significantly faster.

to the formation of sheet-like surfaces in Figure 15(a) that envelope
low separation voids. By inspecting similarity neighborhoods at
user-specified positions in these voids in Figure 15(b), we can see
that particle neighborhoods expand to the separation boundaries.
This behavior suggests how particles from the first time step
form cluster centers and cluster boundaries. Namely, for each
similarity neighborhood its comprised set of particles flow in a
similar and coherent way, and as we show in Figure 14 cluster
boundaries manifest as high separation regions, thus these similarity
neighborhoods are likely to form dense and compact clusters at tT .

6.2 Landmark Evaluation
As described in Section 3.2, we have used temporally-subsampled
farthest point sampling (T-FPS) to yield landmarks, for the efficient
computation of diffusion geometry. We consider the effectiveness
and efficiency of this scheme relative to other possible landmark
selection techniques:

• Random. We select landmarks at random, as performed
in [48]. Note that this preserves the density of the original
manifold sampling.

• Farthest Point Sampling (FPS). We perform farthest point
sampling with respect to the full particle path positions.

We evaluate the quality and efficiency of these techniques on
the Double Gyre dataset. We integrate 7,200 particles from a set
of seeds placed on a uniform grid of resolution (120×60), with a
temporal resolution of t = 100. We analyze the different landmark
techniques as a function of the number of selected landmarks.
We perform evaluation by comparing the subspaces spanned by
the eigenvectors with largest eigenvalues to those of the ground
truth subspace that uses all of the particles. Error is computed
by projecting the landmark-based subspace onto the orthogonal
complement of the ground truth subspace, normalized by the ground
truth subspace’s Frobenius norm, i.e. if Ul is the landmark subspace
and U is the ground truth subspace, the error is: (I−UUᵀ)Ul

‖U‖F .
We plot the errors and the computation times in Figure 16,

where each experiment is ran over 10 trials. We plot error with
respect to the eigenvector subspaces spanning the largest 50,
150, and 250 eigenvalues. Multiple subspaces are considered to
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account for the fact that diffusion distances use different ranges
of eigenvectors as a function of scale: the larger the scale, the
more weight is placed on the eigenvectors with largest eigenvalues.
As shown, randomly sampling landmarks produces much higher
error compared to the FPS-based techniques. Furthermore, there
is not much difference in error between using all time steps, and
only using a temporal subsampling. However, the computational
expense of using FPS is much higher than T-FPS. Relative to our
experiments shown in Table 1, T-FPS ranges from approximately
5x to 20x faster than FPS, depending on the number of time
steps T . However, due to the O(n ·nl) complexity T-FPS does not
necessarily scale well as the number of landmarks increases, as
shown in the timings of Table 1.

We also note that the error does not necessarily monotonically
decrease, since the bandwidth is a function of the landmark
distribution, and hence only captures features at the scale of the
landmarks. Nevertheless, in general the error does decrease as
we increase the number of landmarks. Similar experiments with
other datasets produced consistent results with the Double Gyre,
indicating the generalization of T-FPS.

7 DISCUSSION

We have demonstrated how to use diffusion distances defined on
particles for analyzing flow data. Diffusion distances allow us to
compute separation and similarity measures directly on particles,
and in a multi-scale manner, where the scale can provide the user an
interface to understanding particle strength in separation/similarity.
We have shown applicability to a wide number of applications, as
well as multiple sources of particle data, either integrated through
time-varying vector fields or computed as particle-based simulation.

Our method has several limitations that we intend to address in
future work. First, we find that the computational complexity can
become quite large as the number of particles exceeds 1M, and the
number of landmarks similarly grows large, i.e. 25K landmarks, as
discussed in Section 6.2. We intend to consider different types of
sampling schemes that are more efficient while still being effective.
For instance, one option is to consider blue noise sampling, in
particular the bilateral blue noise sampling technique [63]. Treating
particle positions at the initial time step as the spatial domain, and
the positions defined over the rest of the time steps as features,
such an approach is applicable to our setting, and should be much
more efficient.

Currently, we leave scale as a user-defined parameter that
can be adjusted for purposes of exploration. However, for certain
applications exploration can be tedious when the proper scale only
exists in a certain set of small ranges. We will explore automatic
techniques for scale selection, using the data to determine the sets
of scales that are suitable for analysis.

Another limitation of our approach is the restriction of particles
to exist in the same temporal window, and to have positions defined
at every time step. We intend to explore techniques that allow for
the comparison of particles for arbitrary time spans. In this manner,
we can have a means of comparing particles that just overlap in a
certain time range, or potentially fail to overlap at all. Prior work
in spectral clustering [64] has shown the utility of this in analyzing
trajectory data over arbitrary time intervals, but the interpretation
with respect to diffusion remains unclear.

Our analysis relies on particles to form a single connected
component as defined by the matrix kernel K. However, certain
types of particle-based simulations such as fracture can produce

data that leads to multiple connected components. Although we may
process each component separately, diffusion distances between
particles on different components will be undefined. For future
work we will investigate techniques to address this limitation.

For future work we intend to explore different uses of diffusion
for flow data. In particular, in the shape analysis community it is
common to derive features from the heat kernel [50], a geometric
object that is closely related to diffusion geometry. In particular,
the heat kernel signature has proven a useful feature for multiple
tasks. We think that leveraging these features could be useful for
analyzing flow, particularly for relating flow data produced from
an ensemble of simulations.
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[10] A. Pobitzer, A. Lež, K. Matković, and H. Hauser, “A statistics-based
dimension reduction of the space of path line attributes for interactive
visual flow analysis,” in Visualization Symposium (PacificVis), 2012 IEEE
Pacific. IEEE, 2012, pp. 113–120.

[11] D. J. Price, “Smoothed particle hydrodynamics and magnetohydrodynam-
ics,” Journal of Computational Physics, vol. 231, no. 3, pp. 759–794,
2012.

[12] J. Wu, Z. Lan, X. Xiong, N. Y. Gnedin, and A. V. Kravtsov, “Hierarchical
task mapping of cell-based amr cosmology simulations,” in Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. IEEE Computer Society Press, 2012,
p. 75.

[13] J. Chandler, H. Obermaier, and K. I. Joy, “Interpolation-based pathline
tracing in particle-based flow visualization,” IEEE Trans. Vis. Comput.
Graph., vol. 21, no. 1, pp. 68–80, 2015.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[14] J. Chandler, R. Bujack, and K. I. Joy, “Analysis of error in interpolation-
based pathline tracing,” in EuroVis, 2016.

[15] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis
and an algorithm,” in NIPS, vol. 14, no. 2, 2001, pp. 849–856.

[16] J. Helman and L. Hesselink, “Surface representations of two- and three-
dimensional fluid flow topology,” in IEEE Visualization, 1990, pp. 6–13.

[17] R. Laramee, H. Hauser, L. Zhao, and F. Post, “Topology-based flow
visualization, the state of the art,” Topology-based methods in visualization,
pp. 1–19, 2007.

[18] C. Garth, X. Tricoche, and G. Scheuermann, “Tracking of vector field
singularities in unstructured 3d time-dependent datasets,” in Visualization,
2004. IEEE. IEEE, 2004, pp. 329–336.

[19] R. Fuchs, J. Kemmler, B. Schindler, J. Waser, F. Sadlo, H. Hauser, and
R. Peikert, “Toward a lagrangian vector field topology,” Comput. Graph.
Forum, vol. 29, no. 3, pp. 1163–1172, 2010.

[20] G. Haller, “Distinguished material surfaces and coherent structures in
three-dimensional fluid flows,” Physica D: Nonlinear Phenomena, vol.
149, no. 4, pp. 248–277, 2001.

[21] G. Machado, S. Boblest, T. Ertl, and F. Sadlo, “Space-time bifurcation
lines for extraction of 2d lagrangian coherent structures,” in Computer
Graphics Forum, vol. 35, no. 3. Wiley Online Library, 2016, pp. 91–100.

[22] F. Sadlo, A. Rigazzi, and R. Peikert, “Time-dependent visualization of
lagrangian coherent structures by grid advection,” in Topological Methods
in Data Analysis and Visualization. Springer, 2011, pp. 151–165.

[23] F. Sadlo and R. Peikert, “Efficient visualization of lagrangian coherent
structures by filtered amr ridge extraction,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1456–1463,
2007.

[24] A. Agranovsky, C. Garth, and K. I. Joy, “Extracting flow structures using
sparse particles.” in VMV, 2011, pp. 153–160.
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