Domain-Centered Support for Layout, Tasks, and
Specification for Control Flow Graph Visualization
Supplemental Material

Sabin Devkota*, Matthew P. LeGendre’, Adam Kunen®, Pascal Aschwanden®, Katherine E. Isaacst
*The University of Arizona, Tucson, USA, Email: devkotasabin @email.arizona.edu
TLawrence Livermore National Laboratory, Livermore, CA, Email: {legendrel, kunenl, aschwandenl} @llnl.gov
{The University of Utah, Salt Lake City, USA, Email: kisaacs@sci.utah.edu

I. OVERVIEW

These materials contain more details regarding the literature
review (Sect. [T), user study (Sect. [I), and our analysis
of CFGConf using the Cognitive Dimensions of Notation
(Sect. [IV). Additional figures are in Sect.

Data files used in Sect. IV (Examples) in the main
documents can be found at: https://github.com/hdc-arizona/
cfgConf/tree/main/supplementary/example-files.

II. DRAWING CONVENTIONS LITERATURE REVIEW

We sought out figures in conference papers to broaden our
understanding of CFG drawing conventions. We created a list
of conferences where CFG drawings might occur from our
collaborators. The conferences are listed below:

o International Symposium on Code Generation and Opti-

mization (CGO) (2016 - 2020)

e Programming Language Design and Implementation
(PLDI) (2019 - 2020)

o The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC)
(2017 - 2019)

We viewed all papers published in these conferences,
picking out ones which showed node-linked diagrams. We
originally planned to consider three years for each conference,
however we extended our search for CGO and limited for
PLDI based on our successes and failures in finding CFGs in
those conferences.

We collected 65 papers with node-link diagrams. From those
65 papers, we found 15 true CFGs (some with added data), 17
CFG-like networks, 11 trees, and 26 other node-link diagrams.

We considered a graph “CFG-like” if it also illustrated
program flow or dependencies. These included program de-
pendence graphs, flow and state graphs, data flow graphs, data
dependency graphs, I/O flow graphs, and program graphs. All
other non-tree graphs went into the other category.

When choosing designs, we were most heavily informed by
the CFG and CFG-like drawings. The other graphs showed a
wider variance in drawing styles, though they also tended to
follow paradigms such as top-down ordering.

We then coded the diagrams for drawing conventions. The
full list of papers and codes is available as the file litera-
ture_survey_drawing_conventions.xIsx.

Our codes include layout parameters, such as the general
organization of flow (e.g., top-bottom, left-right), groupings of
nodes (enclosure), and alignments (vertical, horizontal). CFGs
displaying the loop layout from CFGExplorer were given the
code “loopify layout.” We also noted where labels appeared
and stylistic changes to primitives such as color, texture, shape,
borders, and opacity.

Due to the small nature of most of these graphs, we were
unable to discern alignment or organization of nodes in a row
(or column), which was something we were expecting to see.
Also, only one graph showed elision of nodes.

We noted a few layouts that were coded “compact” where
we noticed a trade-off between linear flow and making the fig-
ure fit or taking advantage of white-space. We did not consider
implementing these features as we focused on exploratory
analysis use cases rather than journal article concerns.

III. USER STUDY DETAILS

The user study can be accessed directly at the follow-
ing URL: https://github.com/hdc-arizona/cfgConf/blob/main/
user-study-instructions.md

The participants were first asked to setup CFGConf
by following the Setup Guide in the documentation.
Setup involved cloning the CFGConf repository, starting the
http.server, and creating a simple two-node drawing and
running it as the “Hello, World” example.

The participants were then given the following task prompts:

Task 1: Replicate the drawing below (Fig. [I). In other
words, create a CFGConf JSON file that creates the provided
drawing.

Task 2.1: Produce a drawing of the graph from the dot
file t2.dot. Loops inside the graph are provided in the file
t2_loops. json.

Task 2.2: Compare the resulting drawing from CFGConf
to a drawing produced using dot graphviz on the file t 2. dot.
Note: These drawings are expected to appear different. Do
not be concerned if they do not look the same.

To produce a pdf file using graphviz, you can run the
following command in the terminal. The drawing t2.pdf
will be created in the same directory.

dot -Tpdf t2.dot -o t2.pdf


https://github.com/hdc-arizona/cfgConf/tree/main/supplementary/example-files
https://github.com/hdc-arizona/cfgConf/tree/main/supplementary/example-files
https://github.com/hdc-arizona/cfgConf/blob/main/user-study-instructions.md
https://github.com/hdc-arizona/cfgConf/blob/main/user-study-instructions.md

D

Fig. 1: Prompt image for Taskl.

Task 3.1: Produce a filtered drawing using the graph
specified in ltimes.dot. A dyninst analysis file named
ltimes. json with the functions and loops is also provided.

In this drawing, show only the node ids in the boxes, rather
than the disassembly like the previous example.

Use the following set of nodes as the starting nodes for
filtering:

"B1973", "B1974", "B1978", "B1986",
"B1993", "B4052", "B4183", "B4205",
"B4206", "B4430"

The drawn graph should be limited to nodes within 3 hops
of the above set and have no more than 25 nodes total.

Task 3.2: Turn off the filtering and view the changed
output.

Task 4: Produce a filtered drawing using the same graph
files ltimes.dot and ltimes.json with collapsed
functions.

Specifically, the functions in the filtered graph
should be collapsed unless they contain loops, with the
exception of the function ___kmpc_fork_call. Ensure
__kmpc_fork_call is still drawn.

Use the following set of nodes as the starting nodes for
filtering:

"B3805", "B4451"

The survey contained the following open response ques-
tions:

1) Please add your comments on task 1 e.g., the strategy
you used, what worked, what didn’t etc.

2) Please add your comments on task 2 e.g., the strategy
you used, what worked, what didn’t etc.

3) Please add your comments on task 3 e.g., the strategy
you used, what worked, what didn’t etc.

4) Please add your comments on task 4 e.g., the strategy
you used, what worked, what didn’t etc.

5) What, if anything, did you find easy about using CFG-
Conf?

6) What, if anything, did you find difficult about using
CFGConf?

7) What are the ways in which CFGConf’s JSON language
and system can be improved?

8) Do you have scenarios in which you would use CFG-
Conf? If so, please describe.

The participants could upload their CFGConf JSON files
through the survey or email them to the lead author. Only the
lead author had access to participant identifying information.

IV. HEURISTIC EVALUATION WITH CDN

The Cognitive Dimensions of Notation (CDN) [1] is a
framework to assess programming languages. Instead of evalu-
ating the accessibility and notational efficiency of the language
using metrics like the number of lines of code required to
generate a drawing, CDN provides a collection of cognitive
dimensions that work as design principles for languages. As
described in Sect. III of the main document, we assessed
CFGConf in light of the cognitive dimensions. We describe
the cognitive dimensions here and discuss the extent to which
CFGConf fulfills them, summarizing our assessment on a
scale of Poor, Fair, Good, Very Good, and Excellent.

Abstraction. Abstraction assesses how well the language
supports defining new terms and concepts to clarify the exist-
ing program. While CFGConf provides higher-level abstrac-
tions, developed to match concepts and structures in CFG, it
is a specification and not a programming language. Therefore,
it does not support creating new abstractions. This ability
was requested by Participant 3 in user study. Furthermore, in
providing the higher-level abstraction, lower-level details about
the layout algorithm are not directly available in CFGConf.
Thus, we describe CFGConf’s fulfillment of Abstraction to
be Fair.

Closeness of Mapping. Closeness of mapping assesses how
well the language matches the problem and how users might
describe the problem apart from the notation. CFGConf uses
higher-level abstractions such as loops and functions
that match the CFG problem space. The notation also borrows
from existing ones in terms of styling the graphical elements,
support the existing dot format, though there could be some
confusion between dot and CSS. We thus describe CFG-
Conf’s fulfillment of Closeness of Mapping to be Very Good.

Consistency. Consistency assesses how well the language
casts similar actions and features using the same terms. At a
low level, CFGConf is consistent in its use of camel-case and
using ‘is’ to denote boolean keys. Styling on nodes and edges
uses the same value keywords. Where possible, CFGConf
is consistent with other languages, e.g., using data formats
similar to GraphML and style encodings consistent with d3js,
vega-lite, and dot. We recognize this is a mix of sources,
so we describe CFGConf’s fulfillment of Consistency as Very
Good.

Diffusiveness. Diffusiveness (alternatively, Terseness)
assesses how concisely the language supports its goals.



When separating the data files (e.g., graphFile,
structureFile), the CFGConf specification is generally
quite terse. Most of the keys and objects are not required.
However, Participant 2 mentioned CFGConf was verbose.
Participant 2 tried copying the data by hand in the second
task, which may have contributed to this assessment. The
JSON format for graph definitions is more diffuse than the
dot style. Thus, we consider CFGConf’s diffuseness as
Good.

Error-Proneness. Error-proneness assesses how likely
users of the language are to make mistakes or slips. As
CFGConf is based in JSON, common slips in JSON, such
as missing commas and unmatched quotations or brackets,
are also present in CFGConf. Participant 2 in our user study
noted this as a difficulty. As CFGConf allows overriding of
style parameters, users could forget which ones contain this
information. We thus describe CFGConf’s fulfillment of Error-
Proneness to be Good.

Hardness of Mental Operations. Hardness of mental
operations assesses how much mental effort is required to
produce the language. CFGConf is declarative in nature, built
on the widely used JSON format, so we expect most operations
to not be difficult. However, the non-required parameters in
filtering and function collapsing may need additional thought,
especially for users unfamiliar with these concepts. We thus
describe CFGConf’s fulfillment of Hardness of Mental Oper-
ations as Good.

Hidden Dependencies. Hidden dependencies refer to de-
pendencies between parts of the language, where changing
one may lead to unintended effects or require previous un-
known changes. These dependencies can compound, making
it difficult to change as the specification gets longer.

Generally, related specifications in CFGConf are within
the same JSON object, and thus apparent. We do set several
defaults to support diffuseness/terseness, but these do not
affect the other parts of specification. The one exception is
style overrides, which move from the rendering section
to the data section, which was a trade off made for both
terseness and consistency and compatibility with dot.

All changes, even style-related ones, have the possibility
of affecting the final graph layout. Given the complicated
optimization done in the underlying algorithm, the depen-
dency between these declarations and the final visualization
is unknowable. Users understand in general what changes
will happen, but cannot predict the final layout. Therefore,
we describe CFGConf’s handling of hidden dependencies as
Good.

Premature Commitment. Premature commitment assesses
how flexible the language is to working on its parts and making
decisions about the final specification in any order. CFGConf
is declarative and modularized. As long as their names for data
and IDs do not change, they should be able to come to the
same specification regardless of the order they write it. Thus,
we describe CFGConf as Excellent in terms of Premature
Commitment.

Progressive Evaluation. Progressive evaluation assesses

whether the language permits checking incomplete work,
i.e., running the program when it is not yet fully written.
CFGConf applies default values where drawing parameters
are unspecified. Users can refine their drawing by setting more
parameters. Thus, we describe CFGConf as Excellent in terms
of Progressive Evaluation.

Role-Expressiveness. Role-expressiveness assesses how
easy or difficult it is to understand each part of the language,
both in reading it and producing it. CFGConf has three top-
level keywords for data, rendering, and filtering
respectively. The first two are further broken down ac-
cording to their semantic application, e.g., nodes, edges,
loops, and functions. We thus describe CFGConf’s
Role-Expressiveness as Excellent.

Secondary Notation. Secondary notation refers to the abil-
ity to annotate the program or add additional information that
is not part of the language. CFGConf is based on JSON,
which does not have a comment capability. As CFGConf is
robust to unrecognized keys, auxiliary information, including
comments, can be specified as a key-value pair, but this is not
ideal. Thus, we describe CFGConf’s support for Secondary
Notation as Fair.

Visibility. Visibility assesses the ease of identifying, finding,
and comparing parts of the language. CFGConf is JSON-based
and can be written in a single file. When the data is large, it
can be placed in a separate file, with the remaining keywords
likely fitting in a single screen, though this could separate style
overrides from global style options. Most of the keywords
are semantically meaningful, thus helping with search and
comparison. We thus describe CFGConf’s Visibility as Very
Good.

Viscosity. Viscosity assesses how difficult it is to make
changes in the languages, including whether changing one
part requires more changes in other parts. The modular design
of CFGConf allows users to make changes within a single
top-level JSON object. The most difficult change would be
changing the ID of a node, edge, loop, or function when it is
referenced elsewhere. CFGConf recognized a separate label
keyword to discourage these changes. We thus describe CFG-
Conf’s Viscosity as Very Good.

V. CFGConf RENDERING STYLE EXAMPLE

shows a CFG styled globally with a different node
color and shape based on the specification in Func-
tion nodes are grouped together and enclosed with rectangular
boundaries.

REFERENCES

[1] T. R. G. Green, “Cognitive dimensions of notations,” in Proceedings of
the Fifth Conference of the British Computer Society, Human-Computer
Interaction Specialist Group on People and Computers V. New York,
NY, USA: Cambridge University Press, 1989, pp. 443-460. [Online].
Available: http://dl.acm.org/citation.cfm?1d=92968.93015


http://dl.acm.org/citation.cfm?id=92968.93015

"data": {
"graphFile":"singlefile.dot",
"structureFile":"singlefile.structures.json"

h

"rendering": {
"node": {
"shape": "diamond",
"style": "filled",
"fillcolor": "#78d838",
"fontcolor": "white",

"label": "id"
)
"edge": {
"style": "solid",
"color": "black"
)
"loop": {
"background": true
b

"function": {
"boundary": true

}
}

}

Fig. 2: Specification with global style parameters, resulting

in g 3



nestedLoops

floatLoop

frame_dummy
1

register_tm_plones

do_global_dtors_aux

]
8 K-
5 )
Ll > =YIi
H 2
2
g
H .
Z
& AY
= e e
z = =
z g =
e - = Wik E
I = = AIE
E‘ 4
2
_l‘ 7
H
3 \
CJ‘

—
<>

Fig. 3: A CFG styled globally with diamond shape nodes with a green background. Rectangular boxes group nodes belonging
to the same function. This drawing has been rotated to better utilize the aspect ratio of this format.



	Overview
	Drawing Conventions Literature Review
	User Study Details
	Heuristic Evaluation with CDN
	CFGConf Rendering Style Example
	References

